R I A

United States Patent (1]

-Fischer

LT

(u} Patent Number: 5,390,247
{451~ Date of Patént:"*~Feb. 14, 1995

[54) METHOD AND APPARATUS FOR
CREATING, SUPPORTING, AND USING
TRAVELLING PROGRAMS

[76] Inventor: Addison M. Fischer, 60 14th Ave.
South, Naples, Fla. 33942

[21] Appl No.: 123,676
[2] Filed: Sep. 20, 1993

Related U.S. Application Data
[63] Continuation of Ser. No. 863,552, Apr. 6, 1992, aban-

doned.
[51] Int. CLS HU4L 9/00
[52] us.q. 380/25; 380/30
[58] Field of Search 380723, 25, 4, 49, 30;
3957200
[56] References Cited
U.S. PATENT DOCUMENTS
4,868,877 1/1989 FiSChET «.overeeercererensersenmnee - 380725
5,005,200 4/1991 FiSCher .w.omercrmeemmcerssssseineee. 380725
5,040,142 8/1991 Morietal. .
5,142,578 8/1992 Matyes et al .oooooeer....... 380/30
5,164,988 11/1992 Matyeset al.cooovnueuene..n 380725
5,214,702 '5/1993 Fischeroverencenee. e 380725
5,261,002 11/1993 Perlman et al. eeene 380725
5,337,366 8/1994 FiSCBET c.ooreeeeereecrcceeronaronnne 380725
OTHER PUBLICATIONS

Office Automation Concepts and Tools, 1985, Sprin-
ger-Verlag, Berlin, DE pp. 113-133, J. Hogg, “Intelli-
gent Message Systems”.

The Computer Journal, vol. 33, No. 4, Aug. 1990, Cam-
bridge, GB, pp. 290-295, C. Mitchell et al.,, “A Secure

L)

e iy
TRANSMISION PORMAT'

i

STACKY

Messaging Architecture Implementing The X.400-1988
Security Features”.
Primary Examiner—Salvatore Cangialosi
. Attorney, Agent, or Firm—Nixon & Vanderhye
57 ABSTRACT

A method and apparatus for creating, supporting and
using a “travelling program” is disclosed. A “travelling
program” is a digital data structure which includes a
sequence of instructions and associated data and which
has the capability ofdeta'xmmng at least ane next desti-
nation or recipient for receiving the travelling program
and for transmitting itself together with all relevant data
determined by the program to the next recipient or
destination. The travelling program can compute, ac-
cording to any algorithm, the digjtal material which is
to be signed, and also, as needed, the digital material
which is to be verified. The program can conditionally
demdc,basedonanyknowncntena,whlchusers
should participate in the signature process. Digital sig-
natures allow the travelling program to provide other
types of valuable authentication. The travelling pro-
gram operates to automate data collection among a
group of users. It can be sent to one user, attach.(or
detach) relevant data files and move on to the next user.

Data or files, collected from one or more users can be
deposited with another wuser, or accumulated for
batched processing as desired. This methodology elimi-

nates the need for individual users to be counted on to
transmit all the required data in the required format.
The present invention also efﬁciently performs elec-
tronic data interchange (EDI) in the context of a travel-
ling program which sends itself from user to to the next
within an organization, eollectmg, editing and approv-
ing data.

OB~ 29Chlms,29meingSheets

07/30/2004, EAST Version: 1.4.1

U.S. Patent

- - . S RF SRSl Fe i S5 SN A
Ter gk PICRRNE G =2 =S

Feb. 14, 1995 Sheet 1 qf 29

N .

RO -2

bt

5390247

e D8 pagaes

COMMUNICATIONS CHANNEL 12
)
£ 8 9
MODEM : MODEM 10.. MODEM :l
4 2
S L TERMINAL TERMINAL
KEYBOARD/ PROCESSOR B N
CRT W/ MAIN
MEMORY _
o ' 7 NON-
N voiATiLE
STORAGE
k.
S EE—
TERMINALA ./

07/30/2004, EAST Version: 1.4.1

5,390,247

U.S. Patent Feb. 14, 1995 Sheet 2 of 29
TRAVELLING PROGRAM DATA STRUCTURE
HEADER 20
*EACH SEGMENT CONTAINS ~
AN INDICATION OF ITS
TYPE AND SIZE . .
« DATES
+ PROGRAM AUTHORIZING -
INFO VERSION
T INFORMATION TO RESUME
EXECUTION
+ EXECUTION STACK, PLB, ETC. 22
PROGRAM
'32] FOREACH VARIABLE: 24
34 [\ SIZE OF VARIABLE NAME.
« VARIABLE NAME
;Z’,g; OF VALUE rig. 2
40
42 |
OPTIONAL CERTIFICATES
TO PERMIT VERIFICATION 7 ’g. 77 -
OF ANY SIGNATURES 26
DIGITAL : CERTIFICATES
_28A . @
OPTIONAL FILE IMAGES 268 200
RECORDED BY NAME .
- . : READ EACH
g 28N CERTIFICATE
U —
¥
CREATE
CERTIFICATE
(IN CCA)
*202
AL
CERTIFICATES
07/30/2004, EAST Version: 1.4.1

vran ot

2 e e s T

eea et SL

g DIGITAL AND

U.S. Patent Feb. 14, 1995 Sheet30f29 5,390,247

%XC A

ADDRESS AND SIZE OF PROGRAM
WITHIN INCOMING FILE

[MAY BE EITHER SOURCE OR
P-CODE AND INDICATOR IS
MAINTAINED AS TO WHICH

IS THE CASE]

P-CODE & SIZE

CURRENT PCB

FCB LIST

CERTIFICATION CONTROL
AREA

*VARIABLE"INFO TABLE

— || | —>|—>

SECURITY INFO (E.C.

AUTHORIZATION) ON
PROGRAM

NAME-OF FILE CONTAINING

INCOMING TRAVELING PROGRAM

(FILE WITH INCOMING
TRAVERSAL)

OF PRIOR TRAVERSALS
IN ARRIVAL PATH

"INPUT PARAMETERS'

INPUT HEADER INFO

07/30/2004, EAST Version: 1.4.1

~ .

U.S. Patent Feb. 14, 1995 Sheet 4 of 29 5,390_,247

%FCB '

T NEXT FCB

1o

T
. WHETHERTILE JUSY

ATTACHED
- WHETHERIT IS TO BE DETACHED
ON NEXT TRAVERSAL
+ . FILE HAS BEEN EXPORTED
« TYPE OF FILE (STREAM,
RECORD), AND OTHER
ATTRIBUTES
IF IN INCOMING TRAVERSAL,
GIVE POSITION AND SIZE
WITHIN FILE

TAG FOR REFERENCING THIS
FILE

LOCAL NAME OF FILE (IF
FILE IS ATTACHED, OR HAS
~ BEEN EXPORTED)

HASH OF THE ASSOCIATED
FILE (IF PRESENT IN REPORT)
_7

e

rig. 4

la

16

e

- - READ (S8HASH)
rig. 8 HEADER 154
- STORE INTO

XCA .

®

07/30/2004, EAST Version: 1.4.1

U.S. Patent Feb. 14, 1995 Sheet 5 of 29 5,390,247

gPC B

T PRIOR PCB ON STACK

T NEXT P-CODE POSITION

LAST P-CODE OPERATION -

Fig. >

T EXPRESSION EVALUATION
STACK (USED DURING
EXPRESSION EVALUATION)

LEVEL OF THIS STACKING
PROGRAM

UST OF SHARED ("EXPOSED")
VARIABLES

LISTS OF OTHER RESOURCES
PRIVATE TO THIS LEVEL

[

gVCB

B-TREE POSITION POINTERS

SIZE OF VALUE

b varue 66

TYPE OF VARIABLE (OPT) 68

"LEVEL OF CONTROL 70
| (FORCLEARINGS) .
SIZE OF NAME . 76

s =

T NAME T 80 rig. 6

07/30/2004, EAST Version: 1.4.1

S 5

U.S. Patent Feb. 14, 1995 Sheet 6 of 29 5,390,247

LOADER

START 120

* CREATEXCAAND ~~~ '~
INITIAL PCB

* SAVE ACCESS TO INPUT
PARAMETER -

* SAVE INPUT FILE NAME

* INITIALIZE VIT

122

YES
126

* READ INPUT AND
DETERMINE TYPE OF
SEGMENT

* PROCESS IT AS INDICATED

ISTACKS ARE "RESTORED ~

"VIT & VCBs ARE RESTORED
-PCBs ARE RESTORED (AND
CONTAIN EXECUTION

RESUME POINT)

07/30/2004, EAST Version: 1.4.1

AN TN T R e e N e

Nt N o AT LT b

U.S. Patent Feb. 14, 1995 Sheet 7 of 29 5,390,_24_-7

ANY HEADER?
BUT NO

LOADED? 162

READ '
PROGRAM 164.-

- Fig. 9
AND TAKE | | /14

HASH &/OR
DIGITAL
~ SiGs
AUTHORIZED
& VERIFIED

| SAVE SECURITY & 170
AUTHORIZATION
IF ANY
— 174

ISTHIS
.SENT AS
P-CODE

+ COMPILE SOURCE
“""INTO P-CODE

» DELETE SOURCE
IMAGE

176

SAVE ADDRESS

& SIZE OF THE
PROGRAM WITHIN
THE INCOMING
e g |+ FILEIN THE XCA " sommowm i

SET ADDRESS
& SIZE OF P-CODE
INTO PCB & XCA

07/30/2004, EAST Version: 1.4.1

U.S. Patent Feb. 14, 1995 Sheet 8 of 29 - 5,390,247

@‘(%SURE'
230

COMPUTE HASH OF I

ALL PREVIOUS
HASHES

INFO 198

240 YES

HANDLE BUILT|IN FUNCTION !
VERIFY SIGNATURE
300 & TELL USER WHO
PASS CONTROL TO "REALLY" SENT
i i s A _IsuiLT IN FUNCTION | THEFORM |
e EXECUTION STACK -
IS THE INPUT

Fio. 13

Fio. 17

07/30/2004, EAST Version: 1.4.1

)

s e .222:

U.S. Patent Feb. 14, 1995 Sheet 9 of 29 '5,390,247

VARIABLES (EVEN IF
NULL) ALREADY LOADED?

YES
214

IS THIS FILE
TAG ALREADY
LOADED?

rig. 12

« SET OTHER STATUS
« SET FILE POSITION

RELATIVE TO INPUT
FILE (FOR LATER
DIREC T RETR

» READ THRU FILE
UNTIL END (BUT NOT
NECESSARY TO LOAD
INTO MEMORY), COMPUTE
HASH

« SAVE SIZE OF FILE

ADD FCB TO COLLECTION
BASED ON XCA

07/30/2004, EAST Version: 1.4.1

U.S. Patent Feb. 14, 1995 Sheet 10 of 29 5,390,247

PROCESS P-CODE INSTRUCTIONS

~250

FROM CURRENT PCB, GET
POSITION OF NEXT
P-CODE INSTRUCTION

(52 IN FIG. 5)

rig. 14

252

SAVE TYPE OF P-CODE
OPERATION (54 IN FIG.5)
-~USED, E.G. TO
DISTINGUISH CALL VS.
FUNCTION INVOCATION,
ETC.

* UPDATE THE PCB (52) .
TORERLECT

P-CODE INSTRUCTION

AS REVISED "NEXT"

/254

PERFORM THE P-CODE OPERATION
EACH P-CODE OPERATION IS
HANDLED BY A ROUTINE

WITHIN THE INTERPRETER

e

®

07/30/2004, EAST Version: 1.4.1

Laas

(a2 £L57 TOBDIAS o e erm rmrsame 2 T

U.S. Patent

Feb. 14, 1995

Sheet 11 of 29

259

EXIT WITH
POSSIBLE
RESULT VALUE

5,390,247

PROCESS ANY
*POST-WAIT®
ROUTINE ASSOCIATED
WITH INTERRUPT

07/30/2004,

PARAMETER fs 264
262
PERFORM ROLLOUT: LEAVE ONLY ENOUGH
-WRITE ALL WORKING PROGRAM AND DATA
STORAGE TO AUXILLARY IN STORAGE TO LATER:
MEMORY. THIS INCLUDES -INVOKE THE "INTER-
DATA STORAGE SUCH ROLLOUT "ROUTINE®
AS VCB3, VIT, FCES, XCA, -RESTORE THE
PC8s, THE EXECUTION INTERPRETER
START; THE P-CODE IT- “KEEP TRACK OF
SELF. IN SOME ENVIRON- HOUR TO RELOAD
MENTS THIS MAY EVEN WORKING STORAGE
ROLLOUT TO I
ITSELF.
—268) £266
INVOKE THE
ON RETURN, *INTER-ROLLOUT"
* RELOAD THE ROUTINE- EG.
INTERPRETER /~| -WAIT FOR INPUT
. RECOVER WORKING “WAIT FOR TIMER
STORAGE FROM A
AUXILLARY -CALL EXTERNAL
) _ ROUTINE
R R R S AR AR AY L R N] A -

EAST Version: 1.4.1

M L 41

¢ i xanas 4 TACE

Sheet 12 of 29 5,390,247

Feb. 14, 1995

U.S. Patent

s R apin SR 461

b
w
5
bl
F
4
nA
bt X
o3
5
3
]
:

.w.- /7

80d SIHL
3SYITIH ANV IAONIY

T3ATT AVHOO0U SIHL OL
ALVARId STUNOSIY ANV
STIBYRIVA TIV dNANVITO -

802l

- (z8) @0d
~ ANZRRIND MON 3HL SV HOVIS

~ NOLLNO3X3 40 dO1 .1V 80d ANd -
UITIVO SHL 40 LVHL NVHL ¥3HOIH

INO SV (85) TIAIT NVHOOUd 138 .

SNLV.S ¥IHLO 138 -

3NILNOY HO4 SH3L3INWVHVd 3Hvd3Hd -
ANILNOH 40 NOLLONYLSNI
* 3009-d 1SHI4 3ON3H343Y ol (28) 135 -
v 80d M3N 3lvaud -

902l

MOV1S FHL NO
(NuNL3Y Woud)
17ns3N And-

LdMIH3ANI

3009-d alXd. | - {
HO4 TVNOIS ° 00¢
LINS D3 "(TTvD HO) NOLLONNA 3
Q3NIS3a WVNOO0Nd

SV 1INS3y 138 *

Nom_.

NUN13Y G3NIZ30 WVHOOUd e

EAST Version: 1.4.1

07/30/2004,

L ARt D

"l 3

U.S. Patent Feb. 14, 1995 Sheet 13 of 29 5,390,247

“T ~ INvVOKED, THEN cOPY

EXTERNAL FUNC’TIONSICALLS
\TE FUNCTION, BY
FROM APPRO--
PR!ATE SELECTION
OF LIBRARIES - IMPLEMENTATION OPTION:
SHOULD PROGRAM BE
TERMINATED OR RATHER 360

364

CREATE PARAMETER
LIST IN NON-
ROLLBACK STORAGE

362

SET P-CODE
INTERRUPT WITH:

* PRE-ROLLOUT=
ESTABLISH PARAMETERS

+INTER ROLLOUT=
INVOICE EXTERNAL .
ROUTINE WITH PARM

366

rig. 18

RELEASE INPUT PARM LIST
, .+ I[F EUNCTION e e

RESULT TO OUR
EXECUTION STACK.

07/30/2004, EAST Version: 1.4.1

FEZRNT PURIY SYPIPEHI . e ST N R P o T M e st IRV eSlRie |

U.S. Patent Feb. 14,1995 Sheet 14 of 29 5,390,247

?

* GO TO *START", WITH
INDICATOR THAT THIS IS
*INVOKED" EXECUTION

* PASS ANY DESIRED
PARAMETER

{

OUR RETURN:

* OUR STORAGE MAY BE
RELOCATED |_ 382

* THEREFORE WE HANDLE
THIS RELOCATION IN

« ez IMPLEMENTATION = - =&

DEPENDENT

I

IF THIS WAS TYPE-FUNCT,

THEN USE RETURNED

VALUE AS RESULT OF P-CODE
OPERATION

- 380

Fio. 19

384

R e SR TR GO T LIPS, HT S B IR AT

07/30/2004, EAST Version: 1.4.1

U.S. Patent Feb. 14, 1995

Sheet 15 of 29

5,390,247

TRA E @ 1
VERS ’ 400 [LOAD RETURN
VALUE OF .
1 ONTO STACK
COLLECT ALL RELEV/ =
VARIABLE DATA INTO A
TRANSMISSION FORMAT:
vrr
- VARIABLE STACKS
*VCBs
Y | _A02
CONSTRUCT HEADER :
< TRANSMIT HEADER
- TRANSMIT PROGRAM & 404
AUTHORIZING INFORMATION »2
FROM INPUT FILE
rio. 20
TRANSMIT VARIABLES
- NAME
- « CURRENT VALUE 406
ANY STATUS
] 0
TRANSMIT ANY CERTIFICATES
WHICH WERE COLLECTED AS
- R DIGITAL I
(AUTHORIZING)SIGNATURES
DURING THIS OR PREVIOUS
TRAVERSAL 22
A {
410 v « COPY FILE, ALSO COPY
ATTRIBUTES FROM
INCOMING TRASVERSAL
INTO OUTBOUND
TRANSMISSION{(INPUT
FILE NAME IS XCA'
INPUT POSITION |
INFCB
Cenmrear * o e ITICTTTETTAP NN -r P O P - SR —_——
1 420
INTO THARSMISSIGN & ATTRIBUTEG.
INTQ TRANSMISSION
PART O 18 TRANSMISS!ON
INCOMING
TRAVERSAL YES
NO

07/30/2004, EAST Version: 1.4.1

QU "

U.S. Patent = Feb. 14, 1995 Sheet 16 of 29 5,390,247

432
1

IS "OVERALI" USER-
TO-USER DIGITAL
SIGNATURE PERFORM DIGITAL SIGNATURE -
REQUESTED IN HASH o ALL MATERIAL
OR REQUIRED TRANSM (HASH'WAS
8Y SYSTEM, TAKEN As EACH PART OF
USER, OR TRANSMISSION. Tms STEP
PROGRAM? MAY INVOLVE USER INTER-
ACTION TO PERFORM THE
SIGNATURE.
supn.v VALIDATION AT END
F TRANSMISSION AS THE
'CLOSURE' SEGMENT . 438
« HASH REFLECTING PRIOR <
MATERIAL (UNAUTHENTICATED
s'?clajn?ég' HAslH TO ARCHIVE. Fi 27
USER-TO-USER 9.

AUTHENTICATION
* INCLUDE ANY NEW CERTIFICATES
WHICH MAY NOT APPEAR IN THE

CERTIFICATE SECTION
436
v ' /
CLOSE TRANSMISSION
f‘437

REMOVE THE "1* h

FROM THE RETURN

?rTAGE A_g-D.AREPLACE

WITH ERASE (FILE NAME)
ATTEMPT TO ERASE
FILE SYSTEM & USER
SECURITY CONTROLS
WILL GOVERN WHETHER 450
THIS IS SUCCESSFUL .
VLTI PRSI e~ S TUNWERITITT TR St ey TR T TR e
rio. 23

{RETU
SUCCESS)

456
BACK WITH
ERROR
STATUS

07/30/2004, EAST Version: 1.4.1

U.S. Patent Feb. 14, 1995 Sheet 17 of 29 5,390,247

ATTACH (TAG, FILENAME)

DOES FCB
WITH SAME
DELETED 442

FILENA a6
REFLECT y
FIE NG PASS BACK BACK TO
WHICH IS ~ ""ERROR
ACCESSIBLE CODE
BY USER?
BUILD FCB WITH
SPECIFIED "TAG" & 248
FILENAME.FILEWILL [rio. 22
BE ATTACHED DURING
TRAVERSE .

BACK-WITH ERROR
INDICATOR
RESULT .

07/30/2004, EAST Version: 1.4.1

U.S. Patent Feb. 14, 1995 Sheet 18 of 29 5,390,247

EXPORT (TAG, OUTPUT FILE)
NAME [REWRITE INDICATOR]

DOES FCB

EXIST FOR

SPECIFIED
TAG?

BACK-WITH
ERROR
INDICATING
CODE

WAS FILE PART YES.

OF INCOMING :
TRAVERSAL? BACK-WITH ERROR :
NO NOT ALLOWED TO
500 EXPORT NEWLY
ATTACHED FILES
' YES
DOES SPECIFIED
FILE ALREADY
EXIST?

SHOULD WE
OVERWRITE, OR
ADD NEW STUFF
AT END?

492

490

B E N PEEMITTED
A ERETTS e o gy
BEGINNING [| OFEXISTING FILE

ol

COPY DATA FROM n
THECORRECT =~ |g)
POSITION [N THE ** - -
INCOMING TRAVERSAL
FILE TO THE

OUTPUT FILE

BACK-WITH
SUCCESS CODE
RESULT

07/30/2004, EAST Version: 1.4.1

P e e . ’:ig. 2J~ SRR U TR e ¥ =t LA

U.S. Patent Feb. 14, 1995 Sheet 19 of 29 5,390,247
Fio. 26
SIGN
(BUILT-IN FUNCTION)
[VALUE=SIGN(DATA, PARMS...)} Fioc. 27
51
(INTER-ROLLOUT)
HOW MANY
=/ SUTABLE 509 /598
AU | PRESENT PANEL
, TO SOLICIT USER
CONSTRUCT DATA TO SELECTION
BE SIGNED, AND MOVE (DO WITHOUT
THAT TOGETHER WITH AS NEEDED)
ANY OTHER PARAMETERS 7
(SUCH AS AUTHORITY) INDICATE ERROR 517
TO WORK AREA FOR AND RETURN NO
PARM TO THE INTER- WITH APPROPRIATE
ROLLOUT ROUTINE ERR
513
< 512 L
LOCATE ASSOC., |—= —
EXIT, AND SCHEDU!
A P.CODE INTERRLE PRIVATE KEY 820
PRE-ROLLOUT=NULL
INTER-ROLLOUT=() TO SOLICIT SECRET
OST-WAT=@ PASSWORD USED TO
DECRYPT PRIVATE
' (POST WA [] 522,
o | S | [enmmee
SIGNATURE
PUSH RESULT (SIGNATURE COMPUTE SIGNATURE
VALUE, OR ERROR CODE) ERASE CLEAR TEXT
ONTO STACK IMAGE OF PRIVATE
' /526 (RETURN WITH AND PASSWORD KEYS
ADD TO OVERALL . DT LT ST LN Ay OO
" 'CERTIFICATE LIST
(CCA) ANY
CERTIFICATE,
NOT ALREADY
PRESENT,
NECESSARY TO
VAUDATE THIS
SIGNATURE
AND AUTHORITY

07/30/2004,

EAST Version: 1.4.1

»omo

DISPLAY
@_’__;‘ 540\ {

U.S. Patent Feb. 14, 1995

Sheet 20 of 29

(LAYOUT DESCRIPTION NAME)

5,390,247

‘GENERATE QUTPUT FROM
SPECIFIED LAYOUT DEFINITION
‘ANALYZE CONDITIONED ATTRIBUTES
& STATIC ATTRIBUTES FOR FIELDS
& GROUP OF FIELDS

‘DO VARIABLE SUBSTITUTION
‘DO [TERATION & CONDITIONAL
LOGIC AS NECESSARY

*RETAIN ASSOCIATION BETWEEN
INPUT FIELDS & THE
CORRESPONDING VCB EVEN AS
THE RELD IS FLOWED INTO TS
FINAL OUTPUT POSITION

"APPLY RESULTING ATTRIBUTES

TO EACH FIELD eg.

‘COLOR

‘FONT
‘BOLDFACEATAL
‘STYLE

‘SIZE
‘UNDERLINE
‘BUNKING
‘REVERSE VIDEO
‘NON DISPLAY
‘HIGH INTENSITY

‘INSERT POSSIBLE ERROR MSG &
INDICATE PROPER CURSOR POS

542+ T

WRITE THE FIELDS TO THE
USER'S TERMINALS ALLOWING
INPUT FIELDS AS APPROPRIATE

544 _)

} 548
ANALYZE INPUT
INSERT INPUT DATA
IN ALL ASSOCIATED
VARIABLES
‘PERFORM FIELD

VERIFICATION FOR
ALL INPUT FIELDS

CROSS-VERIFY RELDS
IN CONTEXT

558
L

PRODUCE ERROR
o MSG & POSITION

PERFORM (OPTIONAL) ROLL
out

{

USER DOES DATA

546\'%

MAP BACK INPUT FIELDS

v

CURSOR TO
ERRANT FIELD

07/30/2004, EAST Version: 1.4.1

o ATRITITONTNTS

AR PR

hoowin ot ITRTWESTNRSIY L

U.S. Patent Feb.

14, 1995

Fio. 29
TIME DELAY(TIME)
570
SET SYSTEM ALARM
CLOCK FOR SPECIFIED
TIME
{ _572

SCHEDULE “INTERRUPT*

1

WAIT FOR TIMER TO CHIME

576

07/30/2004,

Sheet 21 of 29

Fig. 30

5,390,247

SELECT FROM DIRECTORY
(OF FILES, USERS, ETC.)

CREATE LIST OF
ALL CANDIDATE
ITEMS

- 580

-

:

PRESENT PANEL _
WITH (AT LEAST
PART OF) THIS UIST

-

]

SCHEDULE
AINTERRUPT"

P e 583

{

WAIT FOR
USER SELECTION

585

i

RETURN THE NAMES

“I=*OF THE SELECTED . ~

ITEMS EITHER AS

A FUNCTION RESULT
OR AS A SET OF
SPECIAL VARIABLES

| __ 584

BACK

EAST Version: 1.4.1

PR

SR TTATNIEITLS A (e im e

U.S. Patent

Fio. 31

g 000

SIGNED
)

DISPLAY
DATA
TO USER

CONSTRUCT 600
DATA TO BE
DIGITALLY

USER
604 AuTHORIZE
SIGNATURE?

606
{

INVOKE FUNCTION
TO SIGN
COMPUTED DATA

| oo
£
SAVE DIGITAL

SIGNATURE AS
PROGRAM

07/30/2004,

Feb. 14, 1995

VARIABLE Ty

Sheet 22 of 29

Fig.32

ASSEMBLE DATA
TO BE VERIFIED

a2
Yy J

INVOKE "VERIFY*
FUNCTION WITH
VARIABLES AND
THE SIGNATURE

Pl e

/616

TAKE
APPROPRIATE
ACTION WITH
RESULT

EAST Version: 1.4.1

5,390,247

R TOTIOY e P S s STty TR TV [ENT tT 13 [P RO

U.S. Patent Feb. 14, 1995 Sheet 23 of 29 5,390,247

!

620 :
e | Fig. 33

TRANSFERRED

NEED USER
INTERACTION TO
DETERMINE FILE?

622

ASK USER TO HELP
DETERMINE FILE
TO BE TRANSFERRED

L |

ATTACH ACTIVE FILE
CONTENTS TO SET _—626
OF DATA TO BE
TRANSFERRED

07/30/2004, EAST Version: 1.4.1

U.S. Patent Feb. 14, 1995

Fig. 34

————0 00

DETERMINE FILE
CONTAINING DATA
TO BE READ

R

READ DATA FROM
SPECIFIED FILE

AND SAVE AS
PROGRAM VARIABLES.

630

632

00 @—

07/30/2004,

Sheet 24 of 29 5,390,247

rio. 35

640
/

DETERMINE USER
FILE INTO WHICH
DATA IS TO BE
WRITTEN

!

642
INVOKE FUNCTION |~
THAT WRITES
PROGRAM VARIABLES
INTO USER FILE

|

EAST Version: 1.4.1

U.S. Patent Feb. 14,1995 Sheet 25 of 29 5,390,247

lg——oo0 o

/650
PREPARE TO SPUT
SET VARIABLES -
APPROPRIATELY
54 658 gse
pa
‘DETERMINE /s 1 INSTANCE
DESTINATION —————y 1
“TRANSMIT o
‘IMAGE OF PROGRAM . i INSTANCE 2 |
"PROGRAM & VARIABLE H p
-ANY OTHER APPROPRIATE
DATA L |N:TANCE J '
60
MORE DESTINATIONS ‘662
TO WHICH TO
SPAWN? ,
/,
v / ’//
®
[]
®
s l é y
' ' 668
DO FINAL TRAVERSAL Z
TRANSMIT FINAL
‘PROGRAM & VARIABLE N
-ANY OTHER APPROPRIATE 7/~ INSTANCE
DATA l A
Fig. 36

07/30/2004, EAST Version:

1.

4.1

U.S. Patent

Feb. 14, 1995

682 L____1!

Sheet 26 of 29

rio. 37

5,390,247

PERTINENT
VARIABLES

CONTROL
FOR THIS
SERIES -

HAS NOT YET

68
[ISSUE MSG: |
"MAS'

ARRIVED*

,694
/
INVOKE WITH A
PREDETERMINED
PARAMETER, SAY,
e.g. "DEBRIEF™
_.698 IINST ANCE WITH
CHECK FILE TO 706 APPROPRIATE
SEE IF ALL PARMS.
| INSTANCES HAVE V
702 |NOW ARRIVED COLLECTED DATA
/ FROM INSTANCE °
ISSUE MSG: 700 | IS RETURNED TO
WAITING | NO MASTER AND '
FOR MORE WRITTEN TO A
FORMS TO COLLECTION FILE
ARRIVE* 704
YEs_ | .
COLLECT ALLDATA |}

FROM FILE INTO OUR
VARIABLES. ERASE
FILE. TRANSMIT
AGGREGATE DATA

TO NEXT DEST

= ce e

07/30/2004,

~-708

EAST Version: 1.4.1

e e i Koy

fo -

U.S. Patent - Feb. 14, 1995 Sheet 27 of 29 5,390,247

rio. 38
TRAVELING
PROGRAM ARRIVES 210
AT MERGING
DESTINATION AND
IS RUN
WRITE COLLECTED
DATA FOR THIS /712
INSTANCE TO
SPECIAL (PERMANENT)
FILE 716
Z
PROCESS
COLLECTED
DATA
NO 720 /7l8
[MSG*WAITING |}/ SEND THIS
FOR MORE FORM TONEXT
FORMS TO DESTINATION
ARRIVE"

722

DELETE L/

THIS CURRENT EXIT
(INSTANCE) ...} i . AN
()

07/30/2004, EAST Version: 1.4.1

PR

U.S. Patent Feb. 14,1995 _ Sheet 28 of 29 5,390,247 -

Fio. 39

———* NEED TO SOUICIT USER FOR A PARTICULAR X12 CHARACTERISTIC

720
CALL X125UB (SEGMENT NAME, "XX YY WWF)
POPULAR COMMON OPTIONS
(THE *SHORT LIST,* IN
ORDER OF NORMAL USAGE)

8 736
*SHORT ¥
usT .
EMPTY? USE SEGMENT NAME TO

LOCATE SEGMENT DICTIONARY
TABLE OF ALL ASSOCIATED
DATA OPTIONS (X12 SEG LIST)
?:’35 ?Qg\smm USE DATA DICTIONARY 738
LOCATE THE EXPANDED TO EXPAND EAC& o
DESCRIPTIONS OF EACH - ASSOCIATED DESCRIPTION
OF THE OPTIONS ON DATA (USE X12 DATANAME)
SHORT UST FUNCTION
(USE X12 DATA NAME)
FUNCTION
! 728 740
DISPLAY THE DISPLAY THE
y
USER
WANTS FULL, =5 |
LONG UST?
ACCEPT USER'S
SELECTION FROM
SHORT UST
742
[
ASSEMBLE AND
EMIT COMPLETED
X12 TRANSACTION

07/30/2004, EAST Version: 1.4.1

U.S. Patent Feb. 14, 1995 Sheet 29 of 29 5,390,247
READ RECEIVED
ED1 TRANSACTION

PARSE ENCODED ED1
NOTE PROGRAM
VARIABLES

MOVE RECEIVED ED1
TO ARCHIVE
REPOSITORY

754

PROCESS SEGMENTS
VIA COUPLED
SEGMENTS

DICTIONARY

756

_ENFORCE SEGMENT 758
RULES o
LOCATE DATA
DICTIONARY 760
ASSOCIATED

WITH SEGMENT

DESC=X12 DATANAME (SEGCODE, DATA ITEM)

_.USE COUPLED DATA DICTIONARY, RETRIEVE __...
TO GET MEANINGFUL DESCRIPTION OF
" DATAITEM

' ——

PUT THIS INTO - 764
DISPLAY VARIABLE

! PROCESS ALL DATA ITEMS IN SEGMENT

PROCESS ALL SEGMENTS IN TRANSACTION

07/30/2004, EAST Version: 1.4.1

53,390,247

1

METHOD AND APPARATUS FOR CREATING,
SUPPORTING, AND USING TRAVELLING
PROGRAMS

This is a continuation of U.S. patent application Ser.
No. 07/863,552, filed Apr. 6, 1992, now abandoned.

FIELD OF THE INVENTION

The present invention relates to a method and appara- 10

tus for creating a “travelling” program which has the
capability of moving itself together with necessary asso-
ciated data from one computer user to another to
thereby create a powerful tool for processing, authenti-

cating, and collecting data at various computer nodes. 15

BACKGROUND AND SUMMARY OF THE
INVENTION

‘Within an organization, documents are often moved

manually. A mail or delivery service is often employed 20

when documents are required to be transmitted be-
tween organizations.

Techniques for electronically transmitting documents
within an organization and between organizations are

well known. The rapid growth of electronic mail sys- 25

tems, electronic transfer systems and the like have
served to automate certain business transactions and
eliminate some of the manual document transfers that .
are in most instances unnecessary.

One prior art methodology for automatically trans- 30

femng information between users (for example, within
an organization) utilizes a so-called “electronic forms”
methodology. This “electronic form” methodology
presents data to a user, solicits the user’s input via a

conventional display, verifies that the input data has 35

been correctly entered, and thereafter transmits such
data to another user.

The electronic form methodology is very limited in
many respects. For example, if the data represents any

value; then there is always the potential danger that 40

data could be manipulated or altered, or simply created
bogusly. Attempts to address this danger have involved

ing certain critical fields which are to be digitally
signed. This allows a certain limited amount of authenti-

cation for specific input fields, exactly as they were 45

entered.

However, it does not permit complex data structures
to be assembled and then digitally signed. The present
invention allows for the travelling program to compute,
according to any algorithm whatsoever, the digital
material which is to be signed, and also, as needed, the
digital material which is to be verified.

Thus, for example, the present invention allows the
actual data which mmgnedtobcdnﬁ'erentthanany field

7 At IEEN A fact, it is possible that the signed material

contains none of the actual data as presented by the
user. .

An example, of one way this is especially useful is
when the travelling program of the present invention

creates an EDI (electronic data interchange) transac- 60

tion based on aspects of the entered data. The program
has the ability to sign the ED] transaction. Such EDI
transactions may well be composed of complex digital
information which was looked-up, based on internal

tables within the program, from other tabular files, or 65

from the supervisor or interpreter which drives the
travelling program. Thus, input fields which may have
been simply entered as “X™s which selected from some

07/30/2004,

EAST Version:

2 .
table, the actual digital material which is signed is en-
tirely different.

It is anticipated that the type of digital signature de-
scribed above may be applied to data construction
which will have a long life—and perhaps be verified by
different entities over a period of time. In the case of
EDI, for example, the signatures can be bound to the
EDI transaction itself, and may be verified by any fo-
ture recipients of that transaction, even outside the
contextofthetravellmgpmgmm.’l‘hlstypeofdlgnal
signature is analogous to a hand-written signature
which appears at the bottom of a paper purchase order
or contract.

In addition to being able to sign arbitrary data, the
present invention also allows the program to condition-
ally decide, based on any known criteria, which users
should participate in the signature process.

For example, with the present invention, the travel-
ling program can make logical determinations, within
the program, as to what co-signature requirements may
exist. for particular data, user, or some combination.
This can include information contained in a user’s X.500
certificate, or enhanced digital certificate (e.g., as ac-
cording to the inventor’s U.S. Pat. No. 4,868,877 or
5,005,200). Because complete programmatic flexibility
exists, such extracted information can even be used to
regulate the future transmission route for the trave.lling
program.

In addition to usmg digital signatures for simple au-
thentication, the present invention also allows authority
requirements and uses to be included and verified as
well. This draws upon, for example, the teachings of
U.S. Pat. Nos. 4,868,877 and 5,005,200 to control au-
thority proof and delegation.

On the other hand, the present invention also allows
uses digital signatures to allow the travelling program
to provide other types of valuable authentication. For
example, as a security convenience the present inven-
tion allows for the digital signature authentication of the
entire transmission from one user to another. This in-
cludes the travelling program itself, its variables, and
any ancillary data or files.

This second type of digital authentication differs
from the data-oriented authentication described above,
in part, in that it carries long-term significance—since
the variables and other data which are transmitted will
be changed once the receiving user has taken any action
at all. This second type of authentication is therefore
primarily seen as a protection against tampering, .and
can also be used forensically as a backward audit to
detect unauthorized tampering even by one of the ac-
tual users of the form. .

In addition, the Jpresent mventwn also provides a, .
5 third type of authentication, whereby the travelling

program itself may be signed, authenticated and autho-
rized by some trusted issuing authority (c.g., perhaps
the author), to insure that no bugs or “viruses” bave
been introduced. (This even protects against infection
by a user which has valid possession of the program
along the route).

The present invention provides a unique mechanism
for automating data collection among a group of users.
The travelling program may be sent to one user, attach
(or detach) relevant data files and move on to the next
user. Data or files, collected from one or more users can
be deposited with another user, or accumulated for
batched processing as desired. This methodology elimi-

1.4.1

5,390,247

: 3 .

nates the need for mdividual users to be counted on to
transmit all the required data in the required format.

The present invention also efficiently performs elec-
tronic document interchange (EDI) in the context of a
travelling program which sends itself from user to to
the next within an organization, collecting, editing and
approving data. At the appropnate point, as determined
by the program’s logic, it is then able to programmati-
cally generate a standard EDI transaction (e.g., such as
the X12 850 Purchase Order Transaction set) for trans-
mission to another organization. The travelling pro-
gram is able to digitally sign the finished transaction set.
Accordingly, any receiving organization which can
process the standardized EDI, and the standardized
signature will be able to authenticate and process the
incoming material, even if the receiving organization
does not have all the powerful. techniques available
which are tanght by the present invention.

Conversely, the present invention allows a travelling
program to receive ordinary EDI transaction, possibly
signed, and allows them to be parsed and incorporated
into its variables. The travelling program then has the
capability of validating the input and incorporating
them into displays, and to move them among various
recipients as necessary.

BRIEF DESCRIPTION OF THE DRAWINGS

These as well as other features of this invention will
be better appreciated by reading the following descrip-
tion of the preferred embodiment of the present inven-
tion taken in conjunction with the accompanying draw-
ings of which:

FIG. 1is a block diagram of a communication system
in accordance with an exemplary embodiment of the
present invention;

FIG. 2 shows an exemplary structure of a travelling
program together with its associated components;

FIG. 3 shows an exemplary execution control area
data structure;

FIG: 4 shows the data structure of a file control block
(FCB) which is used when a travelling program at-
taches files to, or detaches files from itself;

FIG. 5 shows a process control block that is utilized
in the execution of a travelling program;

FIG. 6 illustrates a variable control block data struc-
ture (VCB) which is used for controlling variables;

FIG. 7 shows an exemplary travelling program
loader;

FIG. 8 shows how the header is loaded;

FIG. 9 shows how the “program™ segment of the

travelling program is loaded;
FIG. 10 shows how the “variables” segment of the

travelling program is loaded;
-+ F1G.-11.shows how the “certificate” -segment of the

travelling program is loaded;

FIG. 12 shows how the “file” segment of the travel-
ling program is loaded;

FIG. 13 delineates how the “closure” segment of the
travelling program is loaded;

FIG. 14 represents the operations performed in pro-
cessing P-code instructions;

FIG. 15 shows processing which takes place after the
P-code operation is performed;

FIGS. 16A and 16B show processing for handling
program defined functions or calls;

FIG. 17 shows the sequence of operations for han-
dling built-in functions;

07/30/2004,

35

45

50

55

65

EAST Version:

4

FIGS. 18 and 19 delineate the sequence of operations
performed for executing external functions or calls;

FIGS. 20 and 21 delineate the operations which are
performed when a travelling program mails itself to a
predetermined recipient;

FIG. 22 delineates the sequence of operations for
attaching a file to the travelling program;

FIG. 23 shows how a file may be erased from a user’s
system;

FIG. 24 shows the sequence of operations performed
in detaching a file from a travelling program;

FIG. 25 delineates the sequence of operations per-
formed when a file has been transformed into a user file;

FIG. 26 delineates the sequence of operation per-
formed when material is to be digitally sigped;

FIG. 27 delineate the sequence of operation per-
formed by a “INTER-ROLLOUT” function;

FIG. 28 shows the sequence of operations performed
when displaying information to the user;

FIG. 29 delineates the sequence of operation per-
formed by the “time delay” routine;

FIG. 30 shows the sequence of operations for a “se-
lect from d:rectory” fanction;

FIG. 31 is a routine which demonstrates how the

interpreter program permits a user to perform digital

signatures;

FIG. 32 exemplifies how a user verifies received
information;

FIG. 33 illustrates how a travelling program collects
a file to be transferred;

FIG. 34 illustrates the travelling program operations
performed in reading data from a specified file;

FIG. 35 illustrates how the travelling program may
update or create a file from program variables;

FIG. 36 illustrates how a travelling program may be
designed to be split and send programs to a number of
different recipients;

FIG. 37 demonstrates how previously split programs
40 may be merged; s

FIG. 38 shows an altern:mve apptoach to merging
previously split travelling program information;

FIG. 39 is a flowchart indicating how the travelling
program has been designed to accommodate electronic
document interchange generation functions; and

FIG. 40 relates to the use of travelling program in
receiving an clectronic data interchange transaction.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 shows a block diagram showing an exemplary
communication system which may be used in conjunc-
tion with the present invention. This system includes a
cammunication channel 12 over which communication
between terminals ‘A, B,". ;=
nication channel 12 may, for example, be an unsecured
communications channel such as a telephone line.

Terminals, A, B, . . . N may, by way of example only,
be IBM PC compatible computers, having a processor
(with main memory) which is coupled to a conventional
keyboard/CRT display 4. The processor with main
memory 2 is also coupled to a non-volatile storage
which may be a disk memory. Each terminal, A, B. ..
N also includes a conventional IBM PC communica-
tions board (not shown) which, when coupled to a
conventional modem (6, 8, 10, respectively), permits a
terminal to transmit and receive messages including
travelling programs.

1.4.1

N; midy takeplice Cotmtiu-

madrridlesnia e

3 A e

EE S T

5,390,247

S

As used berein, a “travelling program™ is a digital
data structure which includes a sequence of instructions
and associated data and which has the capability of
detexmnnng at least one next destination or recipient for
receiving the travelling program and for transmitting
itself together with all relevant data determined by the
program to the next recipient or destination.

Each terminal is capable of generating a message and
performing whatever digital signature operations may
be required to load and execute the logic, data, and
functions inherent within the travelling program (as
described more fully herein), and transmitting the mes-
sage to other terminals connected to communication
channel 12 (or to a commaunications network (not
shown) which may be connected to a commumication
channel 12).

The digital signature and certification methodology
described in the inventor’s U.S. Pat. Nos. 4,868,877 and
5,005,200, as well as U.S. Pat. No. 5,001,752 may be

6
for any reasontoreoomputeanymatmaltobevmﬁed,
and to perform a digital signature verification.
The results of such verification can be announced to
any recipient, or more likely, the travelling program
5 can simply perform the verification and announce a
problem should there be a failure (which suggests at-
tempted data tampering).
Because the travelling program monitor may embody
the teachings of U.S. Pat. Nos. 4,868,877 and 5,005,200,

10 it is possible for authorization to also be checked so that

any recipient can be assured that the necessary authori-
zations were performed.

After a particular data structure has been constructed
and signed under control of the travelling program, it is

15 possible to subsequently reconstruct that data structure

and to provide its signature to any other entity. Such

datamnnotbesubsequentlytamperedbyanyennty
However, the present invention also embodies capa:

bﬁtywhnebyaﬂthchmsxnxtteddamxsd@mllyagned

used herein, which patents are hereby expressly incor- 20 asitisscntfmmoncusu'tothenext.'lheu'avelling

porated herein by reference. Alternatively, more con-
ventional digital signature methodology may be uti-
lized.

Before describing the details of the “travelling pro-

program processor in the recipient’s computer can anto-
maucally verify this signature as the travelling program
is loaded. This assures that no component whatsoever is
altered or tampered along the way. While this overall

gmn”stmctureandmcthodologymaccordanccmthzs signature only reflects the state of the data during this

an illustrative embodiment of the present invention, an
example of the general operation in an actual business
transaction context will be briefly described. Initially,
presume that the user of the FIG. 1 terminal A is a

particular transmission, and has no significance for later
users, it does insure a perfect transmission untampered
by third parties, and it does provide a forensic andit
mechanism if it is necessary to trace covert tampering

relatively low level engineer who is a part of a design 30 by participating users, while those users had possession

team in a corporation seeking to obtain component parts
to complete a circuit design project.

The engineer using keyboard 4 would access a parts
requisition “travelling program” of the type to be de-

of the form. This overall signature differs from current
capabilities whereby electronic mail is signed, in that
the signature can be conditionally induced by the trav-
elling program itself, as part of the transmission process.

scribed in detail below. The requisition “travelling pro- 35 Ultimately, after all the approvals have been obtained

gram” will prompt the engineer to describe the compo-
nent parts needed. The travelling program includes an
instruction sequence which will automatlcally transmit
itself to a next destination, e.g., to a supervisor who has

access to terminal B and whois-higher up in the organi- 40 method&choosmgthconemostappmprmteﬁoragwen”"” i

zational structure and possesses the anthonty to ap-
prove the requisition request and digitally sign it. The
travelling program may also transmit ancillary informa-
tion, such as files which may be necessary or useful at

future destinations. The supervisor will be prompted to 45

properly digitally sign the request. It is possible that the
digital signature reflects not only specific variables val-
ues, but also the variable names. Alternatively, the sig-
nature may also reflect some aggregate structure which
is derived from variables computed within the program,
wherein the values may be based on any of many
sources, including data read from file, user input, data
built into the program, various signer’s certificates, or
data which is extracted from the user env:ronment

A Lt”
* (such as the usei’s TD), GG v+ w=nirasusir:

If the request is approved, the requisition form will
take a different path in the organization then if it is not
approved. The travelling program can have the intelli-
gence to determine, based upon the input from the su-
pcrvnsoratt.hcopemungtexmmalB where to transmit
itself within the organization. The travelling program
will also, if desired, load the memory associated with

" terminal B with the appropriate data relating to the

requisition and to attach if desired any files from termi-
nal B that needs to be forwarded elsewhere in the orga-
nization.

Once a signature has been done, the travelling pro-
gram has the ability at any later time, for any later user,

07/30/2004,

within the organizational structure, the travelling pro-
gram will create an actual Purchase Order.
This could be done in many ways. It may well be

possible for a travelling program to support several

circumstance. We describe four possibilities here:

1. The travelling program could simply print out the
final purchase order on paper—possibly even print-
ing the company logo, letterhead, etc.—which
would be physically mailed.

2. The travelling program, if coupled with an outgo-
ing computer-to-fax capability, could automati-
cally generate a purchase order image, that would
appear on the vendor’s fax machine. The buyer

50 would not have to produce paper.

3. If it is known that the vendor also supports the
travelling program methodology of the present
invention, then it is possible that the travelling

fa - program will simply designate the vendor as anextx g
destination.

4. It is also very possible that the vendor does not use
the present invention, or that the purchaser’s trav-
lling pro ot d . ” inty
that the vendor is able to handle the travelling

60 program methodology.

Therefore, the travelling program manipulates its
internal data to construct a standardized EDI (Elec-
tronic Data Interchange) transaction, which can'be
widely recognized and processed. The travelling pro-

65 gram may also cause a digital signature to be performed

on the computer EDI transaction, and the signature and
the transaction can both be transmitted. The travelling
program would then transmit the EDI transaction, as

EAST Version: 1.4.1

e

sy

5,390,247

. - 7
well as any possible signature, to the recipient. (Such
transmission is independent of, and should not be con-
fused with, the transmission of the travelling program
and its ensemble from user to user as part of its directed
travels.)

Any recipient that can handle standardized EDI
transactions is then able to handle the received EDI
input. Any recipient that can handle digital signatures,
is further able to authenticate the transaction. Further-
more, provided the recipient has.sufficient software
capability to recognize them, the recipient can also
automatically validate any authorization that may be

~ embodied as part of the signature. It is up to the logic of

the travelling program the extent to which certificates
should be transmitted along with a signed transaction.

In any of the above cases, the travelling program can
spin off the purchase order (P.O.) information to the
vendor, using any of several possible levels-of automa-
tion. Following - this, the travelling program might
transmit one version of itself, or possibly just a letter,
back to the originator, to inform him that the P.O. has
been seat. Other information can be sent to an archive,
or to a queue to await further processing. This informa-
tion could be a simple message, a record added to a file,
or perhaps the travelling program schedules a full tra-
versal (automatic “mailing” or transmission).

FIG. 2 illustrates the structure of a travelling pro-
gram together with its associated components in accor-
dance with an exemplary embodiment of the present

8 .
for example, relate to a purchase order related applica-
tion.
The travelling program will possess the characteris-
tics described above including the ability to transmit

5 itself to further recipients. Thus, program 22 will in-

clude instructions for forwarding itself via whatever
medium is available to one or more recipients. This is
known herein as a “traversal”. One source code instruc-
tion or several P-code instructions may be required to

10 resultin the “traversal” of the travelling program to one

or more identified recipient(s). The travelling program
structure set forth in FIG. 2 is designed to be indepen-
dent of any particular computer architecture and is
structured in accordance with international standards

15 (e.g., X.209 format).

The travelling program also includes a “variables
segment” 24. Prior to being executed by a first user, the
variable segment 24 may be virtually empty. Once the

program is sent to a recipient, further variables will

20 become defined as they are required by the program to

thereby result in an increasing number of variables as
the program is further executed. By way of example
only, the variable section 24 may identify a variable,
such as “total.dollars.received” togetber with an actual

25 data value for this variable.

Bach variable may have associated therewith the
information set forth in each of the fields 32-42 shown
in FIG. 2. Field 32 identifies the size of the variable
name. The variable name itself is stored in field 34. The

invention. The FIG. 2 travelling program includes at 30 size of the value of the variable is set forth in field 36.

least the following multi-field segments. A first header
segment 20 preferably identifies the size of each of the
component segments, the name of the associated pro-
gram (and possibly other segments described below),

The value of the variable is in field 38. Ficld 40 identi-
fies the execution stack level to which the variable
belongs. The execution stack level is identified since the
same variable name can exist at different levels within a

the date, the type of each component (e.g., theprogmm 35 program (e.g., one variable name may exist in a first

is the source language program, or the program is P-
code that has already been compiled), the identity of the
form, version of the interpreter needed to execute it,
data necessary to resume execution at the appropriate

subroutine while the same variable name may exist in a
separate or nested subroutine and yet have a different
definition). The execution stack level is helpful in recon-
structing the travelling program in a recipient’s com-

point of program resumption (such as execution stacks, 40 puter to take on the same logical structure it had in the
PCB:s, etc.), dates associated with the latest traversal, sender’s computer. Field 42 is an optional field which
and program authorization information (PAI). Each may identify a type of variable, e.g., strings, octets,

segment in the travelling program structure may in-
clude its own description so that the “type of each com-

integers, etc.
The “variables” section 24 may also include a digital

ponent and size” field “S™ would not be included in the 45 signature of the respective variables and related infor-

header segment 20. For the purposes of the present
application, program authorization information (PAI)
may be regarded as security information which defines
the range of operations that the associated program is

mation. Thus, it is also possible for one or more vari-
ables to reflect digital signatures which have been taken
at various times during the travelling program’s execu-
honpath.Oncoft.hesgmﬁmntaspectsoftheaxrrent

permitted to perform (e.g., defining access to files, the 50 invention is that the travelling program can create a

ability to call programs, ability to generate electronic
mail, ability to transmit data to other users, ability to
release documents, ability to execute machine langunage

rograms, ability to access spemal areas of memory, .

digital signatures, ability to access a digital notary pub-
lic device, etc.). Further details regarding the nature
and use of the program authorization information may
be found in applicants U.S. patent application Ser. No.

digital signature on any type of information. This signa-
tnre:s:tselfcamedasavanable"fovenfythes&gnatmc
it is necessary for the program to indicate (or possibly

B s, I areas of mem: .re;compute) the exact value which was signed, and then
-ability to display inforniition to users, ability to SOHCIt ss pass that, together with the signature value (also indi-

cated by a variable) to the VERIFYSIGNATURE

fanction of the travelling program. By including a digi--

tal signature of variables, a recipient will be enabled to
verify that the data 1) has not been tampered with, 2)

07/883,868, entitled, “Computer System Method and 60 has been validly signed, and 3) the signer was properly

Apparatus Using Program Authorization Information.
The header segment 20 may also include a version num-
ber of the associated travelling program.

The travelling program code 22 segment follows the

authorized. See above identified U.S. Pat. No.
5,005,200, which describes a preferred mechanism for
associating authority with a digital signature.

A segment 26 is shown in FIG. 2 for optionally in-

header in the exemplary embodiment and preferably is 65 cluding with the travelling program, certificates associ-

written in the restructured external execution program-
ming language (e.g., the REXX language) or something
akin to PASCAL or COBOL. The program itself may,

07/30/2004,

ated with any digital signatures so that any signatures
may be verified by a recipient as described, for example,

in the above-identified U.S. Pat. No. 5,005,200. Alterna- -

EAST Version: 1.4.1

Bl s> P o

5,390,247

9

' tively, the certificates could be included in the “vari-

ables” section together with the digital signatures.
Segments 28A-28N contain file images that are re-
corded and tagged by name to enable the travelling
program to attach and store a file belonging to a travel- 5
ling program user. Thereafter, the user’s file may be
transmitted along with other prior user’s files with the
travelling program. The name of the file facilitates later
accessing of the file by a user and permits the travelling

program user to identify any file which is, for example, 10

to be further transmitted, or which is to be deposited

with a particular user under particular circumstances.
The travelling program also includes a “closure seg-

ment” 30 which includes, for example, the digital signa-

mreofthemﬁretmvellingstructmesothattherecipi- 15

ent can verify that the transmission of the entire travel-

hngstmcturehasnotbemtampeledmthmnoeltwas

last sent. . P v
Having described the travelling progmm dam stmo-

ture, we now describe the data structures utilized dur- 20

ing the execution of a travelling program and the associ-
ated software for executing the travelling program. An
execution control area (XCA) data structure is shown in
FIG. 3. The XCA specifies information required by the

program which executes the travelling program, once 25

the travelling program has been received by a recipient,
and compiled into P-code (unless it was originally trans-
mitted in P-code).

As shown in FIG. 3, XCA segment 82 identifies the

address and size of the program as it appeared in the 30

incoming file. It should be recognized that, throughout
this description, whenever a segment is stated as storing
an “address” or “location”, that the data may be a phys-
ical or logical address and need not necessarily directly

specify an actual physical memory location. The pro- 35

gram may be received in source or P-code and an indi-
cation is maintained as to which is the case. The execu-
tion control area includes a segment 84 which is indica-
tive of the address of the p-code version of the program .

andnsswe.'l'headdress(orpomtertotheaddm)ofw

the current program control block is identified in seg- -
ment 86. The location of the list of file control blocks
(FCB) which is used, for example, to attach and detach
files associated with the travelling program is set forth -

in segment 88. The address of the certificate control 45

area (CCA) which is used for controlling certificates
which are attached to the travelling program is set forth
in segment 90. The location of the “variable” informa-
tion table (VIT) is set forth in segment 92 which con-

trols and maintains variables in the form of a “B-tree”, 50

which is a hierarchical binary tree structure which

identifies the location of each program “variable”.
The execution control area also includes a security

information segment 94 which may be used for venfy

* “ing thig authenticity“and the authority"imipliéit-in the 55

travelling program. Segment 96 defines the name of the .
file that contains the incoming travelling program
which may need to be accessed. Segment 98 keeps track
of the number of times the program has mailed itself

along the incoming path. The execution control area 60

also includes an input parameter section 109, whereby
parameters relating to the execution of the program
may be identified. Execution control area segment 102
identifies the input header information received from

the travelling program file so that the header informa- 65

tion will be available.
FIG. 4 shows the data structure of a ﬁle control block
(FCB) which is used when a travelling program at-

07/30/2004,

EAST Version:

10

mchaﬁlwto.ordetachmﬁ]sﬁomltsdf Theﬁle'

control block includes a tag field 116 which identifies a
tag for referencing a particular file to be attached or
detached in a particular user’s system. The file contro}
block also includes a segment 110 which is a pointer to
the next file control block. The file control block also
includes a status segment 112 which defines various
status conditions such as whether the associated file has
Jjust been attached by the received travelling program;

whether the file can be detached on the next traversal .

Ge.,nextmailmg)'whethatheﬁlehasbemcxported
(i.e., the associated file image has already been loaded
into-a separate user file); and an indicator as to the “type
of file” such as whether the file is stream oriented or
record oriented. Other attributes of the file may be
defined in this field.

Segmcntlustomanmdwauonastotbeﬁle’spom-
tion within the main incoming travelling program file so
that the particular file in question may be quickly ac-
cessed. Segment 118 identifies whether the local name
of the file (ie., the file name identified by the most
recent recipient of the travelling program). The local
name of the file is typically provided if the file has been
attached and is being forwarded to a further recipient or
if an already autached file is being “exported”, ie.,
stored locally by a particular user. Additionally, as
shown in FIG. 4, the FCB may contain a hash of the
associated file. As will be appreciated by those skilled in
art, a hash is a “one way” fanction which should be
computationally easy to compute given the underlying
data. The hash fonction should be computationally im-
possible given a hash value, to either determine the
underlying data, or to create any data which has the
specified value as its hash. For all practical purposes,
thevalueobtamedfromapplymgahashmgﬁmcuonto
the original aggregation of data is an unforgeable

unique fingerprint of the original data. If the original
datanschmgedmanymanna,thehashofsuchmo&
fied data will be different.

FIG. 5 shows an exemplary program control block
that may be used during the execution of the travelling
program. A program control block keeps track of con-
trol information regarding the program being executed
in a structured programming context where one routine
calls another routine, each routine having an associated
program control block.

The program control block segment 50 points to the
prior program control block in the program execution
control stack. The program control block includes a
segment 52 which defines the next P-code position to be
executed in the current executing programandsegment
54 defines the type of last P-code operation performed.
Segmem 56 includes a pointer to an expmsmn evalua-

. tion stack which is used during expression evaluation.
Thccxecnnonsmcklstypmlly distinct from lié pro-

gram stack, in that the execution stack is used for evalu-
ating expressions and keeping track of internal state.
Segment 58 defines the level of this stacking program
and segment 60 defines a pointer to a list of shared
variables. In the REXX language an “exposed” state-
ment may be used for accessing shared variables.

FIG. 6 illustrates a variable control block data struc-
ture (VCB) which is used for controlling variables.
Segment 62 identifies where in the B-tree a variable is
located and may contain several pointers. Segment 64
identifies the size of the variable value and segment 66
identifies a pointer to where the value is located in
memory. Segment 68 may be optionally used to identify

1.4.1

e PRVOTE

- PR ad b AYE LYY

A

5,390,247

11

the type of variable. Segment 70 identifies which level
of the travelling program the variable is associated
with, so that after the program is executed, any local
variable which was associated with the program may be
readily deleted. Segments 76 and 80 identify the size of 5
the variable name and the name, respectively.

We now turn to illustrating the execution of the trav-
elling program. The sequence of operations performed
by a “loader” portion of an interpreter execution-driv-

ing program is set forth in FIGS. 7-12. These opera- 10

tions relate to preparing to execute a travelling pro-

gram.
A travelling program may execute in one of a plural-
ity of different modes such as an interactive user mode,

a mode in which it is called by another program, or a 13

batch operation mode in which it is sent from node to
node collecting information. Initialization information
is input during the start-up operation (120) to identify
the particular operating mode as well as associated

run-time parameters. 20

The flowcharts set forth in FIGS. 7-12 illustrate how
a travelling program structure shown in FIG. 2 is
loaded. In loading the travelling program, the inter-
preter creates the execution control area XCA and

initial program control block PCB. It saves access to 25

input parameters, saves the names of the input files that
it has been given to load and initializes the variable
information table (VIT) (122). In flowchart block 122,
the execution control area and program control block

associated with the travelling program are established. 30

ThcvanousXCAandPCBﬁeldsareﬁlledinduring
subsequent processing.

Thereafter, the loader begins loading travelling pro-
gram segments, i.e., header, program, variables, certifi-

cates, file and closure segments as shown in FIG. 2. 35

Loading each of the travelling program segments de-
scribed above, e.g., header program, etc., causes appro-
priate data to be filled in as described below.

In block 124, a decision is made as to whether more

segments need to be processed. If so, then the initial 40

input is read for that segment and the type of segment is
depending upon the type of segment (126).
Turning to the header processing of FIG. 8, initially,

a check is made to determine whether the segment 45

being processed is the first segment (150). If not, then an
error condition exists (152) since the header must be the
first segment. If the first segment is being processed,
then the header is read and hashed. The header data is

stored into the XCA (154). 50

The routine then branches back to FIG. 7 at entry
point L. The loader determines whether-there are any
more segments to be processed (124). If so, block 126 i 1s
executed to result in the processing of the “program

“‘ségment as shown in FIG: 9. Initially, a cliéck is'madé to 55

determine whether there is a header, and no program
has yet been loaded (160). If the answer is no, then an
error condition exists (162). If the answer is yes, then
the program is read and a hash is taken (164).

Thereafter, the program hash and/or digital signa- 60

tures associated with the program (and/or the header)
are verified 166. If the digital signatures were not prop-
erly authorized or could not be verified, then an error
condition results 166. If verification occurs, then any

security and authorization information associated with 65

the travelling program is saved (170). Such authoriza-
tion information could alternatively be kept in the
header or in the program segment.

12

" In block lnacheckmmndctodemcwhcﬂm
the program has been sent as P-code. If source code
rather than P-code has been sent, then the source code
is compiled into P-code using conventional compiler
techniques known to those skilled in the art and the
source code image is deleted from storage 174. Regard-
less of the check at block 172, the position in the incom-
ing file of the program—whether it is in source or P-
code format—is saved in the XCA. Knowing the loca-
tion and extent of the incoming image simplifies the
copying of the program into eventual outbound traver-

sal(s). Finally, regardless of whether the P<code was .

just compiled, or whether it was read form the incom-
ing file, the main storage address and size of the P-code
is set into the execution control area (XCA) in 178, after
which the routine shown in FIG. 7 is reentered at block
124 to thereby result in loading remaining segments
such- as the “variable” segment processing shown in
FIG. 10.

In processing the “variable” segment as indicated in
block 190, a check is made to determine whether the
header and program- have been loaded but no prior
variables. If this is not the case, then an error condition
resuits 192. If a header and program have been loaded,
but no prior variables, then we begin an iterate process
to read all the variables, if any. A check is made at 194
to determine whether there are (more) variables to read.
If there are more variables to read, then for each vari-
able, a variable control block (VCB) is created as shown
in FIG. 6 and is completed by the insertion of a variable
identifier and value into the variable control block
(VCB) and the setting of certain status conditions in the
VCB. Additionally, the variable control block is added
to the proper spot in the variable information table
(VIT), the table which contains all program variables
(196).

Additionally, other variable information, for exam-
ple, related to previous executions of the travelling
program are loaded into memory stacks or program

‘control-blocks as appropriate 198. Alternatively, it may -

be desirable to keep such “control” information in the
header segment rather than here. Thereafter, the rou-
tine branches back to block 194, where checks are made
to determine whether more variables are required to be
read. The processing continues until no more variables
need to be read, at which point the routine branches
back to block 124 of FIG. 7 to thereby result in loading
the next segment.

As indicated in FIG. 11, each certificate is read (200)
and a certificate element is created which is then added
to a certificate control area (CCA) in storage (202). As
schematically indicated in FIG. 11, the process is re-
peated until all certificates are received at which point
the routine branches back to block 124 to check for any
more‘ségments.

Alternatively, it may be desirable to transmit the
certificate segment ahead of the program segment, so
that certificates used as part of program authentication-
/authorization can be maintained together with any
certificates used by program variables and user-to-user
authentication.

This branching operation results in the “file” segment
processing shown in FIG. 12. Since the file segments
typically follow the “variable” segments, a check is
made to determine whether the variable segment (even
if null) has already been loaded. If not, then an error has
been detected and an appropriate error message is gen-
erated 212. If the “variable” segment has already been

07/30/2004, EAST Version: 1.4.1

A

e

RER

5,390,247

- .13
loaded, then as_md:mted in block 214, a check is made
to determine whether the file tag associated with the file
has already been loaded. If so, then an error is detected
indicating that the file has been duplicated 216.

If the file tag has not already been loaded, then as
indicated in block 218, a file control block is built for the
file, the tag name is set, other status indicators are set
that may have already been associated with the travel-
hng program, and the file position is set relative to the
incoming file.

Thereafter, theﬁlelsreadandxtshashlseomputed
and saved in segment 115 of the FCB. The size of the
ﬁleissavedmscgmeut 114 of the FCB. The file need
not be loaded into memory at this time (220). Thereaf-
‘ter, the file control block which bas been created is
added to the file control block list collected in the XCA
and the routine branches back to block 124 to process
the next segment (probably “closure”).

In the “closure” processing in FIG. 13, the hash is
computed of all previous hashes for each previous seg-
ment (230). It should be recognized that all the “seg-
ment” material is read subject to hashing. A check is
then made in block 232 to determine whether the hash
taken and calculated in 230 matches the hash added
when the travelling program was sent (which is stored
in the closure segment). If there is no match, then an
error condition results 234,

If there is a match, a check is made as to whether the
travelling program is signed (236). If not, then as sug-
gested at block 238, an action is taken to incorporate
whatever level of security is desired, such as possibly
presenting a notification that the transmission data is not
entirely signed (238).

If the transmission was signed, then the signature is
verified and a message is presented to the user to accu-
rately identify the party who actually sent the travelling
program (and the associated purchase order or other
form) 240. The routine then branches back to block 124
of FIG. 7.

-ys7Fhe completion of the “closure” processing in FIG.

13 results in block 124 determining that there are not
more segments to be processed. Thereafter, a check is
made to determine whether closure was successfully
received and processed (128). If it was not, then the
routine stops execution after performing an unsuccess-
ful validity check (130) and processing halts 132.

If the check at block 128 reveals that closure was
successfully completed, then various steps are taken to
prepare for program execution (134). In this regard,
stacks are restored, the variable information table and
variable control blocks are restored. The program con-
trol blocksaremtoredmchthatthcycontmntheexe—
cution resumption point.

Thereafter, the routine shown in FIG. 14 is initiated
to'actually process the P-codé instructions. The follow-
ing problem must be considered here. Because the pro-
gram execution is effectively. restored identically to the
state it was at the time it was transmitted (as part of the
traversal) from the sender’s machine, there is an issue of
how the travelling program can distinguish whether it is
in the sending machine, and just returned from the send-
ing itself; or whether it has just been restored in the
recipient machine.

The present invention allows multiple ways to ad-
dress this problem. If the traversal function is imple-
mented as a built-in function, then the interpreter will
return a special value (say “0”) to the program after it
has successfully sent itself, and another value (say “1”")

07/30/2004,

10

20

25

30

k]

40

45

50

55

60

65

EAST Version: 1.

.14 :

to the program when its execation is rstored on t.he
recipient’s machine. The travelling program can then
test this value to distinguish the situation. Another way
this distinction could be made i3 by providing the trav-
elling program a function to extract the “number of
prior traversals” (segment 98 in the XCA). Before in-
voking the traversal, the program could use this fanc-
tion to save the prior-traversal-count function. If it
matches the value of the variable, then the program
knowstheexecunonlsraummgmthescndex’soom-
puter; if it differs (and it should only be one greater),
thentheprog:amknowstheexecunonlsmummgat
the recipient’s computer.

When the first user generates the travelling program,
the loader routine shown in FIG. 7-13 is executed with
very few, perhaps no, variables, files, or certificates.
Accordingly, certain of the above-described steps will
be omitted durmgthemmﬂprocmmg The loader
routine is execnted whether the travelling program is
executed for the first time or executed by further recipi-
ents.

FIG. 14 illustrates the operations performed in pro-
cessing P-code instructions; it is repeated for every
P-code instruction executed. As indicated in block 250,
the location of the next P-code instruction is derived
from the current PCB (52), and this becomes the “cur-
rent” P-code operation. In block 252, the length of this
P-code operation is determined, and the “next P-code”
position (52) is updated to reflect the subsequent P-code
instruction. The type of the current P-code operation is
saved in (54) (It is useful for the interpreter to share
common routines which have slight variations based on
the precise operation. For example, the “call” operation
and the “function invocation” operstion are similar
except that the function invocation expects a parameter
to be returned).

Thereafter, as illustrated in block 254, the indicated
P-code operation is performed. Most P-code functions
involve data manipulation;~logical tests and program
flow control. By way of example only, such P-code
operations may include locating a variable and pushing
the variable in a stack, resetting the next P-code opera-
tion to thereby change the flow of control such as
would occur in a branching operation, performing an
arithmetic or string operation, performing IR/THEN-
/ELSE operation based on the popped stack value,
perform DO/ITERATE/UNTIL/WHILE, or other
operations based on stack values, performing SE-
LECT/WHEN/OTHERWISE operations based on
the stack values, performing an “END” operation to
close a DO/WHEN/SELECT operation.

We will soon discuss in some detail various P-code
operations pertinent to the t invention’s unique
operation. With the guidanice given heréin, the Picode
functions can be implemented in a straight-forward
manner by anyone familiar with writing interpreters.

However, ignoring for the moment the details of the
particular P-code function, the preferred design allows
for Pcode operations to generate logical “interrupts” at
their completion.

These allow processing P-code processing to be sus-
pended while some other, external operation must be
performed. This interrupt concept is used in the pre-
ferred design to facilitate the rollout of working storage
whenever lengthy waits or external activity is invoked.

In FIG. 15, on return from the P-code routine in
block 256, the interpreter determines whether the rou-

4.1

PR “oewiygs
I .

-

et e

B N

5,390,247

15

'nnehassgnaledalogwal interrupt. If not, then return is

made to 250 to handle the next P-code operation.

If an interrupt was indicated, a special check in block
258 is made to determine whether this is the special
“EXIT” request. If so, then all resources which should
be released at the end of this program, such as storage,
files, variables, load subroutines, etc., are discarded in
block 260. A possible return value from the P-code
operation, which may have been saved by 269, is re-
turned in block 259 to the invoker of this travelling
program.

Assuming, this is not EXIT, then block 261 deter-
mines whether ROLLOUT should be performed. For
example, in certain environments, it is useful for work-
ing storage to be rolled out while a user completes
eatering input, or while the travelling program is wait-
ing for a time interval to expire, or while a lengthy (or
large) external program has been invoked from the
travelling program logic, or while the digital signature
routine is being executed (since that often involves user
input).

Routines which cause a2 P-code interrupt and a possi-
ble ROLLOUT, regardless of whether they are imple-
mented as built-in fanctions or as language statements
(with their own P-code), include:

SIGN which applies a digital signature to any com-

puter data, and in doing so may solicit the user to

20

25

select from multiple certificates, and solicit the user -

to provide his secret password key which allows
the private signature key to be decrypted and used;
DISPLAY compose and ontput a screen and wait for
the user to supply input;
TIMEWAIT suspend execution until a future time is
reached;

30

SELECT.FROM.DIRECTORY which allows se- 35

lection from, e.g., a directory of users, or a direc-
tory of files, etc.

NOTARIZE wiait for a time notary device to apply
its own digital signature.

In some environments, ROLLOUT is pointless, and 40

in these cases the rollout and rollin processes in block
262, 264, 268 will be absent or inhibited

In any case, a P-code operation which signals an
“interrupt” also supplies the address of at least 3 associ-
ated (“call-back™) functions

the pre-rollout routine, which performs any required

functions in preparation for rollout. This might
include preparing a parm field in temporary stor-
agetopassto. ..

the inter-rollout routine which executes after as much

working storage as possible has been rolled out to
auxiliary storage.

the post-wait routine which handles details following

the rollback after the inter-rollout routine is fin-

-~ ished, and dffer working storage has been restored
from auxiliary. Typically, this involves copying a
result value computed by the inter-rollout routine
which is left in temporary storage, and which must
be loaded onto the execution or copied into a pro-
gram variable.

In block 261, the pre-rollout routine is invoked. This
may be a null routine, or it may setup, e.g., parameters
for the inter-rollout routine.

In block 262, the rollout function is performed, if
appropriate given the environment and circumstance.s
If done, then ROLLOUT consists of writing all work-
ing storage, including the VCBs and their values, the
FCBs, the certificates and the CCA, the execution

07/30/2004,

45

50

65

EAST Version:

. 16 -

stack, the VIT, theXCA,theP-codemalf and any

other blocks, to some auxiliary storage (such as a file).
The interpreter itself may be released from storage, and
this may be done in a special block (264), provided that
sufficient residual program and data remains to later
reload the interpreter and the working storage.

In step 266, the inter-rollont routine is invoked. Typi-
cally, this routine waits for the user to enter input, or to
wait until a future time or other event, or to invoke
another program which might wait for input, or cause
other delays, or require a large of storage which is
vacated by the ROLLOUT.

In block 268, after the inter-rollout is finished, the
interpreter is reloaded, then the working storage, in-
cluding the P-code, the execution stack, all control
blocks are restored from auxiliary storage.

Then in block 270, any final processing is done to tidy
up the operation. For example, this typically includes
copying a result returned by the inter-rollout routine to
the execution stack, or to a program “variable”.

This completes the interrupt, and control is then re-
turned to the top of the P-code handler (250), where the
next P-code instruction is processed.

We now examine some P-code operations of interest.

The interpreter in the preferred embodiment handles
three of CALLs and function: to routines which are
“built-in” to the interpreter, to routines which are writ-
ten as part of the travelling program, and to routines
which are external to the interpreter or program, and
which are dynamically located and invoked when the
program is executed.

In FIG. 17 we see that the built-in function appears
rather simple, and the interpreter simply locates the
specified function based on an index in the P-code, and
lookups the routine’s address (within the interpreter),
and calls it. However, it is important to realize that,
while most do not, some built-in functions might signal
a P-code interrupt. In this case, the built-in function
must provide the.necessary pre-rollout, inter-rollout
and post-wait routines.

The P-code interpreter always distinguishes CALL
and functions, and provides for the return of a resuit to
the execution stack in and only in the case of a function.
For example, the SIGN function retumns a value which
represents the digital signature computed on the sup-
plied data.

In FIG. 16A we see that a call/function to a program
routine causes the creation of a2 new PCB execution
level 300. The new PCB is set to start executing at the
start of the subroutine, by setting the next-P-code. in-
struction (52) to the P-code entry point of the routine.
The first instruction of the routine will be accessed

when block 250 is reentered. Parameters are prepared
for the program ‘roittine;appropriate ‘status ‘conditién

are set, the program level 58 in the PCB is set to one
higher than the calling program and the PCB is placed
at the top of the execution stack as the now current
PCB (82). The result of a program routine is passed to
the caller through the P-code RETURN operation.

In FIG. 16B, we sce how the corresponding program
RETURN P-code operation operates. Block 1200 de-
termines if a RETURN is made from the highest (only)
level PCB, in which case this operates as an EXIT, and
block 1204 signals that a P-code “EXIT” interrupt is
required and passes the return RESULT (if any) as the
value to eventually be returned by block 261 (FIG. 15)
as the RESULT for the entire program.

1.4.1

5,390,247

. 17 S

Otherwise, in_ block 1204, determination is made as to
whether the invoker used 2 CALL or function (e.g., by
checking field 54 in the caller’s PCB), and in the latter
case block 1206 puts the retarn VALUE on the stack
(or creates a default value if the RETURN had no oper-
and).)]

In block 1208, the current level is cleaned-up, and all
resources, including storage, files, variables, etc private
to this subroutine (aka “program level”) are released.
Resources, such as variables which are shared with the
caller are NOT released and are available.

In block 1210, the current PCB is then released so
that the caller’s PCB now becomes the current one, and
return is made to block 256 where execution resumes.

The interpreter includes built in routines which are
designed to accomplish specialized travelling program
related functions relating to providing digital signa-
tures, user files to"the traVelling program and other
functions to eliminate the need for a travelling program
designer to be concerned with programming such func-
tions, -

P-code operations may also involve the performance
of a RETURN function which will affect program
control, a PROC operation which relates to program
control block, The interpreter also performs a DIS-
PLAY operation which utilizes the interactive display
methodology/language described herein. The inter-
preter also performs a TRAVERSE operation which
results in the “mailing” of the travelling program to
another recipient as well as all associated data.

FIG. 18 illustrates an exemplary the sequence of
operations performed for executing external functions
or calls. Such external functions or calls are not built in
to the interpreter or part of the travellmg program but
rather are part of the user’s program library. The named
function or call is located from any of several possible
libraries 354.

A check is then made to determine if the program is
found 356. If the_program is not found, then a check
may, if desired, be made to determine whether the pro-
gram should be terminated or some default action be
performed 358. If a decision is made to terminate, then
an error ‘message is generated, and after various
housekeeping/cleanup operations are performed as de-
scribed above the program is exited (360, 362).

If the check at block 358 indicates that a default ac-
tion should be taken, then the default action is taken,
e.g., by returming a special default function value (368)
and the routine branches back to node 0 in FIG. 14 to
begin executing further P-code instructions.

If the program is found as a result of the check made
in block 356, then parameters are constructed by the

program (364). Invoking external routines involves a

P-codeinterrupt; witlr a-possible rollont” Thisallows s
to conserve storage in multi-user swapping environ-
ments if the external program is lengthy, or in any envi-
ronment if the external routine is huge and therefore the
storage used by the travelling program should be va-
cated in order to satisfactorily perform the external
program. In this case, the P-code interrupt is signaled in
block 366. The indicated PRE-ROLLOUT routine
copies the parameters to the external form the stack (or
variables) to temporary storage. The INTER-ROLL-
OUT routine invokes the EXTERNAL routine and
receives any returned result; and the POST-WAIT
routine copies the returned result to the stack (if the
external routine was invoked as a fanction).

07/30/2004, EAST Version:

5

30

18 oo :
Itispommethattheextmmlroutineisactnallyan-
other travelling program. If so, then special optimiza-
tion may be performed by using the existing already-
loaded image of the P-code interpreter, and simply
passing a new set of parameters to block 120 (FIG. 7).
In this, special logic would need to be inserted in blocks
262 and 264 to conditionally avoid releasing the inter-
preter code itself.

Now let us turn out attention to various special built-
in functions which are used by the present embodiment.
Many of these could be executed either as built-in func-
tions, or as language statements with their own special
P-code operation.

FIGS. 20 and 21 illustrate the operations which are
performed when a travelling program transmits itself to
a predetermined recipient. In block 398, any program
anthorizing information is first checked to insure that

the traversal operation is permitted. (It is conceivable -

that some travelling programs may not be permitted to
travel—but simply to do some function which termi-
nates at the first use). In the rare case that the program
is not allowed to travel, a special return code is pres-
ented to the caller.

The preserit embodiment implements the “TRA-
VERSE” operation as a built-in fonction. Furthermore,
the fanction is defined to return “0” to the immediate
caller of the function and “1” to the caller after the
function is restarted on the recipient’s computer. As
explained carlier, this difference in return code allows
the program to differentiate between-the sender’s and
recipient’s computer:

To do this, in block 399, the TRAVERSE function
first pre-loads the value “1” on the execution stack,
knowing that the stack is transmitted intact. This is the
value that will therefore be returned when the travel-
ling program is reconstituted and restarted on the recip-
ient’s computer. Then all relevant variable data such as
the ‘variable” information table, process control
blocks, the various stacks, variable control blocks are

40 collected into a transmission format such s’ #*fGrmat

45

50

60

65

shown in FIG. 2.

As indicated at block 402, the travelling program
header is constructed and transmitted. The travelling
program is transmitted segment by segment, although it
could, in fact, be transmitted in a field by field format,
or any other way if desired. Preferably, a hash is taken
of each segment as it is transmitted.

Thereafter, in 404, the program and any authorizing
information from the input file received with the travel-

¢

ling program is then copied to the output transmission

file. The “variables” segment is then transmitted includ-
ing the name, current value, and relevant status of each
variable (406). Any certificates which were collected as
ing “this or previous traversals are then transmitted.
Thus, any time a digital signature operation is per-

. .part of performing digital (anthorizing) signatures dur-. o e g
55 is”

formed, all the associated certificates are collected and -

transmitted in the certificate section of the travelling
program 408. The signatures are maintained as variables
within the program (ie, within variable control
blocks). Certificates in the presently preferred embodi-
ment are treated as material which can be accessed via
built in function calls.

Alternatively, it would be possible to inctude in the
certificate package even those certificates which relate
to the signatures of the overall transmission and sig-
nature(s) which anthenticate and authorize the program
itself. However, this would require that all the certifi-

1.4.1

Abai it

PRSI A

cates definitely be known at the-time the Certificate
segment was written, and the logic, and possibly the
position of the segments would need to be re-ordered to
insure optimized processi

5,390,247

20 . .
returned to the current caller to allow it to distinguish
itself.

Because creating a digital signature typically involves
user interaction—such as possibly selecting a certificate

cessing.
In our implementation, we prefer to keep the certifi- 5 and opening the private key, or asking the user to oper-

cates associated with the program’s authorizing signa- -
ture with the program authorization information in the
header or program segment, and the certificates for the
user-to-user transmission signatare authentication with
the signature in the closure segment.

After the certificates are transmitted, all file control
blocks are examined resulting in the examination of all
files which may have been transmitted during prior
traversals and any newly attached files 410. A check is

ate his digital signature token device—the material de-
scribed in FIG. 20 and 21 will actually operate in the
preferred embodiment as P-code interrupt routines. As
an example, the TRAVERSE function code would

10 trigger a P-code interrupt, in which the logic from

blocks 399 to 430 would operate as a PRE-ROLLOUT
routine, while the block at 432 might operate as a IN-
TER-ROLLOUT routine since it may require the
aforementioned user interaction. The blocks thereafter

then made in block 412 to determine whether there are 15 (434, etc) would operate as a POST-WAIT routine.

any more file control blocks to examine. A check is then
made at block 414 to determine whether any file being
examined was scheduled to be.detached 414. If so, the
routine branches back to 412 and neither the file, nor the

file tag is copied for transmission. If the file is not sched- 20

uled to be detached, then the file tag name is copied into
the transmission 416.

A check is then made to determine whether the file in
question is part of an incoming travelling program

which is being carried forward (418). If it is determined 25

that it was part of the incoming traversal, then all file
attributes from the incoming traversal as well as the file
itself is copied to the outbound transmission file (422).
This input file name may be accessed via the execution
control area XCA and the input position of the file is
associated with the file control block 422.

If the file is not part of an incoming traversal but
rather was attached during the travelling program exe-
cution, then the file, the file type, and its attributes are

The travelling program can be designed as desired to
transmit itself numerous time during its execution to

various recipients. In such multiple transmissions, the =~~~

variables can be changed prior to each transmission as
appropriate. In this fashion, the program in the position
to do processing distinct for each recipient in a manner
which is implementation dependent.)
FIG. 22 illustrates a sequence of operations. for at-
taching a file to the travelling program. The attach file
routine responds to an identified file tag and an identi-

fied file name. As indicated at block 440, a check is -
made to determine whether a file control block with the.

same tag exists. If so, then the previous file with the

3p Same tag is deleted 442.

Thereafter, a check is made to determine whether the
specified file name reflects an existing file which is ac-
cessible by the user. In this regard, the travelling pro-
gram may be associated with program authorization

copied into the transmission file 420. Thereafter, the 3s information which defines the range of operations

routine branches back to block 412 to determine

whether there are any more file control blocks to exam-

ine until all file control blocks have been examined.
As indicated in FIG. 21, when all FCB’s have been

examined, a check is made ‘todetermine whether an 40 the user, then an error code/message is returned to the -z

overall user-to-user digital signature has been requested
is required by the system program 430. Such an overall
signature would be useful in detecting tampering with
transmitted information.

which the program is able to perform, including the
ability to access files. Such program authorization infor-
mation will be checked to determine whether the file
name is accessible. If the file name is not accessible by

user 446.

If the file name is accessible to the user, then a file
control block (FCB) is built with the specified tag and
file name and the file will be attached during the next

If an overall digjtal signature is to be taken, then a 45 and subsequent transmission of the travelling program

igital signature operation on the hash of all material
transmitted is performed (432). The digital signature
operation may be performed in accordance with the
teachings of U.S. Pat. No. 5,005,200 (or more conven-

448. The routine is thereafter resumed with an indica-
tion that the file has been attached successfully.

FIG. 23 illustrates how a file is erased from the user
system. When an “erase” function is attempted to be

tional digital signature techniques which do not have 50 executed, security codes are checked to determine

the associated authority verification attributes, as de-
sired). As indicated at block 432, a hash was previously
taken for each part of the transmission. It is noted-that

alternatively, a hash may be taken of each of the hashes, . _ then peration is pestarmed an
The digital sighatufe $tcp may ivolve Gses initeraction” 33 branches back with an indication Whetlier the file

to perform the signature.

Thereafter, validation is supplied at the end of trans-
mission as the “closure” segment. The validation is
supplied by transmitting a hash reflecting prior mate-

whether the program is anthorized to perform such an
operation (450). If the security codes indicate that the
program is authorized to erase the specified file (452),
_then an erase operation is performed and the routine

successfully erased 454. Alternatively, if the program is
not authorized to perform an erase operation, then the
calling routine is returned with an error message indi-
cating that the file could not be erased (456).

rial. The signed hash should demonstrate user-to-user 60 FIG. 24 illustrates the sequence of operations per-

authentication 434. Any certificate necessary to validate
the final signature, which are not already in the certifi-
cate segment, should be included in the CLOSURE
segment. Thereafter, the transmission is closed 436.

formed in detaching a file from a travelling program. As
indicated in block 458, a check is made to determine
whether a file control block exists for the identified tag
associated with the file to be detached. If no FCB exists,

Finally, in block 437, the value “1” which was previ- 65 then the main routine is returned to with an error mes-

ously loaded onto the execution stack for the benefit of
the transmitted program when it arrives at the recipient,
is removed and replaced with the value “0”’—which is

07/30/2004, EAST

sage indicating that the file could not be detached 462.
If the file control block does exist as determined at 458,
then the file control block is deleted at 460 and the main

Version: 1.4.1

R 1 e
e AT L R D R

5,390,247

. 21
routine is returned to with an indication that the file has
been successfully detached.

FIG. 25 delineates the sequence of operations per-
formed when a file is to be “exported”, ie., transformed
into a user file. A travelling program may take a speci-
fied file, for example, representing a spreadsheet and
convert such a file to a recipient user’s.file that remains
with the user even after the travelling program has been
sent to a further destination. The file to be “exported”
will be identified by a tag and an output file name and,
if desired, a rewrite indicator identifying whether the
file may be rewritten.

A check is injtially made as to whether a file control
block exists for the specified tag 498. If no FCB exists,
then an appropriate error indicating code is generated
and the calling routine is returned to (504). If a FCB
do%existwiththcspeciﬁedtag,acheckismadeto
determine whether the file is part of an:incoming travel-
lmgprogmmsm If the file to be exported was not part
of an incoming traversal, then it must have been at-
tached by the user and already be present in the user’s
file and, accordingly an error message is generated
indicating that one is not allowed to export a newly
attached file 502. If the file was part of the incoming
traversal, then a check is made to determine whether
the specified file already exists (480). If so, then a check
is made at block 482 to determine whether it is okay to
rewrite the specified file. The check includes determin-
ing whether the program is allowed to modify the speci-
fied existing file (if no “overwriting”), or to erase and
create the specified file (if “overwriting” is permitted).
If not, then the block 484 is used to return an access
error to the program. If the check at 482 indicates that
it is okay to rewrite, a determination is made as to
whether the file should be overwritten or whether new
material should be added to the end of the file (486). If
overwriting is indicated at 486, then the existing file is
erased (488). A new file is created, if permitted by pro-
gram authorizing security information and preparations
are made to start writing at the:beginning of the file
(490).

If overwriting is not indicated at 486, but new mate-
naldatalstobeaddedatthemd,thenprepamnonsto
start adding at the end of the existing file are made, as
indicated at block 492. Thereafter, the data is copied
ﬁ'omthcoorrectposiﬁonattheincomingu'avexsalﬁle
to the output file (494) and the main routine is re-
entered with an indication that the exporting operation
has been successfully performed (496).

FIG. 26 illustrates an exemplary sequence of opera-
tion performed when material is to be digitally signed.
In implementing the digital signature function, initially
ac.hecklsmadetodetermmewhetheradlgmls:gnmg
operation is permitted by the program as indicated at
block 510. Whethcrapr’ogmmlspermmedtopexform
a digital signature operation will be controlled by pro-
gram authorization information which is associated
with the program and which is monitored every time
the program is executed to ensure that unauthorized
operations are not performed. If the digital signature
operation is not permitted, then an error message will be
generated rejecting the digital signature function call
511.

If the digital signature operation is permitted, then in
block 514, the SIGN function prepares for user interac-
tion by moving an image of the data to be signed, to-
gether with any parameters (such as any required autho-
rization for the data content) to temporary storage in

07/30/2004,

20

25

30

35

40

45

50

. certificate collection (maintained in the XCA (90, ct aD)),

55

60

65

EAST Version:

. 22.
preparation for receipt by the INTER-ROLLOUT
routine (shown in FIG. 27) which will perform the user
interactions associated with performing the actual sig-
nature. -

In block 512, the P-code routine is signalled, with
interrupt routines which are described below.

If the digital signature authorization is authorized,
then a display panel must be presented to the user to
solicitvirhlchocmﬁutcxsmbeusedforthemgnamre
operation. The signature operation is preferably
formed in accordance with the inventor’s U.S. Pat.No

5,005,200 which patent has been expressly incorporated
herein by reference. The user may possess a wide range
ofoemﬁeatwforwfmmngdxgﬂalagnatumopcm-
tions including those constructed along the lines of U.S.
Pat. No. 5,005,200. The INTER-ROLLOUT routine is
gweneontmlatblockﬁl)!)aﬁermuchofthestoragcls
rolled out (the signature routine itself must remain in
storage, of course).

If there are no certificates suitable for performing the
mgnature,thencontrolpassestoblockSlSwhmhgener
ates an error indicator to be returned to the sign opera-
tion. If there is only one certificate suitable for perform-
ing the signature, then it is automatically passed to
(513). If there are more than one suitable certificates,
then the user is asked to select (516). If the user declines
(517), then this an appropriate error indicator is gener-
ated, and passed to the program (515). Otherwise, the
chosen suitable certificate is passed to (513).

'I'heassocnatedpnvatekeyxsthenlomted(sm) If
block 518 determines that it is located on the user’s
token, then step (524) is used to solicit communication
to the token so that it can perform the digital signature.
Otherwise, the user’s private key is located in the sys-
tem encrypted under. a secret password phrase. The
user is solicited (520) for this password, which is used to
decrypt the private key. Any errors or bad passwords
are detected, an appropriate error message is generated.

To inhibit guessing by someone other than the true user, ~=*awu>

only a limited number of tries to give the correct pass-
word are allowed.
Inblockszz,thepaswordisusedtodecryptthe
pnvatekey,whmhmturnxsumdtoagnthemessage,
according to the necessary authority. After the opera-
tion, all traces of the secret material is erased, and the
mgnatnreandcauﬁmtca:eretumedto(%s FIG. 15)
in temporary storage. In (270) control is then given to
the POST-WAIT routine (530) which moves the signa-
ture from temporary storage to the execution stack.
In block 532, the operation is checked, and if it was
successful, the proof hierarchy for the signer’s certifi-
cate is obtained. Certificates are added to the overall

if they do not already appear.

FIG. 28 illustrates the sequence of operations per-
formed when displaying information to the user. The
travelling program. has associated therewith a display
layout capability which is described in conjunction with
FIG. 28. The layout capabilities of the travelling pro-
gram adapt functions heretofore associated with type-
setting applications for use in a user interactive display
mode together with additional enhanced capabilities.

The screen may be laid out such that input fields can
be readily moved and associated with various attributes
for very flexibly interacting with the user. Various dis-
play related operations and functions are summarized in
block 540. The display presents an output based on a

1.4.1

.ol v

v Bt W RN s

R O]

5, 390247

23
specified layout definition proe& conu'olled by the
display processing portion of the interpreter.

The display processing involves analyzing condi-
tional attributes and static attributes for the fields and
the group of fields in the layout definition. In the display 5
processing subroutine, variable substitution and itera-
tion using conditional logic is performed as necessary.
Although variable substitution is permitted, the system
retains association between an input variable and where

the field is to be displayed on the screen in the corre- 10

sponding variable control block (VCB) even if the field
is flowed into its final output position as dictated by the
layout definition.

The following attributes are then provided to each

field including, color, font, boldface/italics, style, size, 13

underlining, blinking, reverse video, non-display (e.g.,
for hiding passwords), high inteasity display, etc. Addi-
tionally, possible error messages are inserted-where
appropriate for a detected error condition and the
proper cursor position is indicated.

The layout language used in block 540 permits not
anly the definition of a screen output but also definitions
for accepting input. As indicated in block 542, fields are
written to the user’s terminal allowing input fields, as
appropriate depending upon the application. As previ-
ously described, data structures may be rolled out to
auxiliary storage (544) and rolled back (546) after the
user performs data entry into the appropriate input
fields.

To do this, the step 544 actually involves signaling a
P-code interrupt, and having the block 545 executed as
the associated INTER-ROLLOUT routine, and block
546 executed as the POST-WAIT routine responsible

for mapping the input fields back to the VCBs for the 35

associated variables. This may involve passing data
through temporary storage.

Thereafter, the input is analyzed and the input data is
inserted in all associated variables. A field validation is

then performed for all input fields 548. Thus,acheck,‘o

may be made to make sure that for numeric ﬁeldsonly
numbers have been entered. Similarly, a check may be
made to determine whether an input field has the speci-
fied attributes.

Thereafter, a check is made at block 550 to determine 45

whether there has been an error in any field. If there has
been an error, then an error message is produced and
the cursor is positioned to the errant field (552), after
which the routine branches back to 540 to generate an

error message display. 50

If the check at 550 fails to reveal an error in a particu-
lar field, then a further check is performed to cross
verify that the fields are correct in context (e.g., al-
though two adjacent fields may be correct individually,

‘an‘error-condition'may be defined regarding the'combi- 55+

nation of fields) 554. Based on a cross verification, a
determination is made as to whether the field contains
an contextual error. If not, then a return is made to the
caller 558. If there is a contextual error then an error,

message is produced in accordance with block 552. 60

It should be noted that verification of both the indi-
vidual fields is completely under control of the pro-
gram There may be various specifications, utility rou-
tines and other conveniences to simplifying handling

common situations, but in general, any possible valida- 65

tion is possible. Cross-validation of fields may involve
more semaqtic concerns, and is thus more likely .to
require specialized programming,

24

FIG. 29 delineates a sequence ofopaatmn petformed .

by a time delay routine. The time delay function may be
utilized to wake up at predetermined time intervals and
check to see whether any incoming electronic mail has
arﬁvedandattachitselftothatmailtothexebyefﬁ-
ciently handle incoming electronic data interchange.
Thus, though such a time delay mechanism, a travelling
program could examine a particular mail box at prede-
termined time intervals to check whether any mail has
arrived. If the mail has arrived, the travelling program
could send the mail to a destination to be handled by a
further recipient. Alternatively, the travelling program
could examine incoming data (such as mail), and based
on various content indicators, automatically perform a
traverseandspawnancw“instance”ofitselfw!ﬂch
could treat the mail appmpnatcly Of course; the origi-
nal “instance” could continue executmg and process
~every instance that arrives.

For example, if the incoming information happened

20 to be EDI transactions, then a travelling program could

read the information (using, for example, a READ built-
in function), break it apart into internal variables, deter-
mine by whom it should be processed, and perform the
appropriate traversal. Once successfully routed, the

25 letter could be disposed, moved or archived, the pro-

gram could clear its variables, and resume looking for
more input.

Alternatively, after determining the type of material
arrived, it could invoke another program to process the

30 incoming data. If the other program happened to be a

travelling program, then that program could be given
the necessary input information, and could then TRA-
VERSE itself appropriate to the handling.

This would allow, for example, one travelling pro-
gram to act as a automatic router for incoming data,
such as EDI transactions, and then hand off to other
travelling programs the transactions which it is not
prepared to handle itself.

Furthermore, if the EDI were signed, then the travel-
ling program could verify the signature immediately. If
the signature were valid, and especially if it were done
according to U.S. Pat. No. 5,005,200, then the authori-
zation for the content could be programmatically
screened, and the travelling program could automati-
cally spin-off an instance to handle the incoming trans-
action.

For example, with proper enhanced authorization, an
incoming Purchase Order could be automatically and
instantly routed to the shipping department to com-
mence filling.

Items which arrived which were not signed, or which
used simple signatures rather than authorizing signa-
tures, could be routed to various clerical persons for
cxcepuon processing and more detailed inspection.

~As indicated in block 570, the tife delay routine, sets '

the system alarm clock for a specified time. Thereafter,
an optional roll out of data to auxiliary storage may be
performed (572) by scheduling a P-code interrupt with
appropriate routines followed by a performance of a
roll-in of data after the specified time period has
elapsed. Thereafter, a return to the calling routine oc-
curs (576).

FIG. 30 which shows the sequence of operations for
a “select from directory” function. The directory could
be a directory of files or a directory of user’s, etc. Ini-
tially, a list is created of all candidate items 580. There-
after, a display is generated to display at least part of the
list 582. The user will have an opportunity to select

07/30/2004, EAST Version: 1.4.1

R Y-

L RS

)

5390247
- among those items presented (583, 585), after which the

25

function will return the names of the selected items,
either as a function result or a set of special variables
(584).

Apgain, as described elsewhere, the actual WAIT is $
performed through the use of the P-code interrupt func-
tion. In this case the INTER-ROLLOUT routine waits
for the user to select from the selection, and returns the
input to the program variables through the POST-
WAIT routine. . 10

FIG. 31 is a routine which demonstrates how the
interpreter program permits a user to perform digital
signatures. As indicated at block 600, the data to be
digitally signed is assembled based on data which the
program is able to access: this includes user supplied 15
input, data read from files, data accumulated from pre-
vious traversals, data based on the user’s environment
(e-g., the user’s TSO identifier), the time, data incorpo-
rated into the program itself, and data derived from
built-in functions (such as the built-in X12 data dictio- 20
nary). Appropriate information is displayed to the user
(602). The user then decides whether or she wishes to
sign the data, as indicated at block 604. If the user indi-
cates he wishes to perform the signature, the system
invokes the sign function, as illustrated in FIG. 26, to 25
further interact with the user and complete the signa-
ture (606). Thereafter, the digital signature is generated
and saved as a program variable 608.

FIG. 31 and the flowcharts which follow depict, in
part, how a user might utilize the travelling program 30
methodology described therein, while performing rela-
tively few operations to accomplish powerful functions
built into the aforedescribed interpreter.

FIG. 32 exemplifies how a user would verify re-
ceived information. As indicated in block 610, the data 35
which is expected to be verified are assembled. Thereaf-
ter, a “verify” function with the assembled data and the
saved digital signature, together with any passible an-
thority requirements is invoked. The verification func-

" tion may be accomplished as described in U.S. Pat. No. 40

5,005,200 or using standard digital signature techniques
if a conventional digital signature operation was utilized
to sign the variables. Thereafter, a determination is
made based on the processing in block circuit 12 as to
whether the signature is verified (614). If so, then the 45
program execution continues. If not, an error condition
results indicating that the data has been tampered with
or that there has been some kind of programming error
616. Return codes are defined to allow the program to
distingunish whether the signature was invalid, whether 50
it supported authorization capability, and if so, whether
the authorization was confirmed.

FIG. 33 illustrates how a travelling program collects
a file to be transferred. Imtlally,theprogramdetemnns

*+%"-the file to be transferred by, for €xample, displaying to 55

the user, a list of files 620. A check may be made to
determine whether it i3 necessary to have user interac-
tion in order to determine the file (622). If yes, then the
user is prompted to determine the file to be transferred
624. If it is not necessary to have user interaction to 60
determine the file, then the entire file contents are at-
tached to the set of data to be transferred 626. The
operation is accomplished using the attached functions
set forth in FIG. 22 which involves building a file con-
trol block as previously described. 65
FIG. 34 illustrates the travelling program operations
performed in reading data from a specified file. Initially
the file is determined containing the data to be read

07/30/2004,

26

(630) 'I'hereafter damnsxeadﬁomthcspecxﬁcdﬁleand

saved as program variables 632. FIG. 35 illustrates how
the travelling program may update or create a file from
program variables. As indicated in block 640, the user
file into which data is to be written is first determined.
Thereafter, a function is invoked that writes program
variables into the user file 642

It should be understood, even if not explicitly de-
scribed in every case, that any program function which
could lead to data loss, alteration, damage or disclosure
is subject ‘to security controls. Such controls can be
applied at the program level, and cither be tied to the
incoming program and possibly by combined in some
predetermined fashion with those also imposed by the
user.

Therefore, for example, in the above case, the travel-
ling program could only read or write user’s data files if
the program were so anthorized.

constraints exist for at least the following
classes of functions:

Display data to the user.

Soliciting input from the user.

Performing digital signatures.

Reading data from user files.

Creating user files.

Erasing user files.

Writing data into user files.

Remaining user files.

Attaching user files.

Exporting attached files into vser files.

Invoking an digital notary device.

Receiving incoming electronic mail -

Reading the contents of electronic mail

Moving or archiving incoming mail

Deleting incoming mail.

Generating outbound electronic mail, or doing vari-

ous types of data transmissions

Being coupled to various types of equipment, device.

and services (FAX, printers, office equipment,
robot devices; manufacturing equipment, etc.)

Performing a program traversal.

Invoking external programs. i

Accessing, updating, activating, erasing, altering,
invoking, or attaching other travelling programs

FIG. 36 is illustrates how a travelling program may -

be designed to be split and sent to 2 number of different
recipients and FIG. 37 demonstrates how the previ-
ously split programs may be merged.
Turning first to FIG. 36, the travelling program may
nwdtobesphtmorder,forexamplc toaoqmresnrvcy
data from a number of different recipients or to collect
or distribute data to a number of different executives in
an orgamzat:on. Initially, the travelling program per-

forms various housekeepmg .operations .to prepare to .
split 680. “Thereafter, variables are set in accordance

with particular application requirements, e.g., the sur- .

vey run by a particular user 652. Destination users are
then determined and the traverse function is invoked as
per FIGS. 20 and 21 to transmit the image of the pro-
grams, the programs variables together with any other
appropriate data tailored to the individual recipients
654. The transmitted variables may change from in-
stance 1 (656) to instance 2 (658), instance 3 (660), to
instance N (662).

A check is ultimately made to determine whether
there are more destinations to which to transmit (664).
If so, then the routine branches back to 652 to transmit
to the further destination. If there are no further destina-

EAST Version: 1.4.1

O N

 EFend

e s~ St B

LR SN TR

- v s

* - destination, Or"to ‘éricapsulate the résult‘ito a simple 55

5,390,247

tions, then the final transfer is performed 666 in the
same manner as explained above with respect to 654 to
result in the final “instance’” 668, thereafter resulting in
the completion of the splitting operation.

In other examples, it may also be that the master $

program simply goes into some other processing. Per-
haps, if it were running in a batch environment as an
input distributor, and all the input were presently ex-
hausted (having just been spun off to a number of users),

it would go into a delay until something else arrived. 10

Turning to the FIG. 37 merge operation, the travel-
ling program has the intelligence to transfer itself from
user to user to merge further data until the merging
operation is oomplete. Initially, the travel]ing program

arrives at a merging destination and is executed (680). A 15

check is made to determine whether this is a master
‘“nstance” which i3 determined by a2 predetermined
variable being set. If it is determined. that this is not a
master instance at 682, a slave instance is identified 684.

At (685) the slave program checks if it has been invoked 20

with the special “DEBRIEF” parameter (which is sim-
ply 2 convention used by this program to determine
when the slave is being called by the master), and if so
(687) passes back all pertinent information to the master

instance, then exits. If this is not the DEBRIEF invoca- 25

tion, then a check is made to determine whether the
master instance is available, ie., has already arrived,
686. If the master instance is available then a call is
made to the master instance 696, through the use of the

call shown in FIG. 18. After the master instance has 30

been invoked, the routine branches back to block 680. If

the master is not available, a message is issued that the

master control for the series has not arrived 688.
Presuming the master instance has arrived and has

been invoked, then at block 682 a determination is made 35

that this is the master instance and a check will be made
to determine whether any other slave instances have
arrived 692. If so, then the slave instance will be in-
voked with a predetermined parameter to initiate the

collection of data (referred to perhaps as “debriefing”) 40

694. At entry point E, data is collected from the in-
stance and is returned to the master and is written to a
collection file 706. Thereafter, the instance that has just
been invoked is erased 708 and the routine branches

back to 692 in which case further information is col- 45

lected if other instances have arrived.

If no further instances have arrived the file is checked
to see if all instances have all arrived (698). If they have,
as determined at 700, then the data could be read from

the collection into variables in the travelling program. 50

Depending on the expected size of the collection file,
and the nature of the processing, it might be more desir-
able for the master program to process the completed
file at that moment and either traverse itself to the next

message, perhaps even an EDI] transaction and sunply
transmit that raw data.

In other cases it might be appropriate for the program
to ATTACH the file to itself and transfer it wholesale

to another process. The file is erased and aggregate data 60

is transmitted to the next destination 704. If all instances
have not yet arrived, then a message is issued such as
“waiting for forms to arrive” (702) and the routine is
temporarily existed.

FIG. 38 shows an alternative approach to merging 65

previously split travelling program information. As
shown in block 710, the travelling program arrives at a
merging destination and is run. The collected data is

07/30/2004, EAST

then written to a special file 712. A check is made to
determine whether all other instances have arrived as
indicated at 714. If so, then the collected data is pro-
cessed 716, and the program traverses to the next desti-
nation 718 and the routine is exited. If all other instances
have not arrived as determined at 714, then a message is
displayed such as “waiting for more forms to arrive”
(720) and the current instance is deleted 722, and the
routine is exited.

FIG. 39 is a flowchart indicating how the travelling
program has been designed to accommodate electronic
data interchange (EDI) generation functions. FIG. 39
more specifically demonstrates how a particular “X12”
standard characteristic may be used. The X12 standard
has an associated data dictionary and segment dictio-
nary. The X12 segment dictionary, for example, may be
used to define all segments necessary to define a pur-

--chase order. Each segment is defined as being a piece of

data which is then looked up in a dictionary. Because
there are many different ways to specify the quantity of
an item, many variations of data are permitted in X12.

The present system embeds the X12 data dictionary
into the interpreter which may be called as a built-in
function. As indicated in block 720, initially a call is
made to the X12 subroutine by specifying a segment
name and items “XX, YY, WW, ..., The program can
provide X12 data code for popular common options
typical in the organization’s environment, s0 as to build
a short list of options in order of normal usage. Exam-
ples of such items are, in a purchase order context, item
number, part number and quantity. This call will result
in a call to the built in data dictionary.

A check is made to determine whether the short list is
empty (as indicated in 724). If so, the segment name is
used to call the built-in function X12SEGLIST that
locates the segment dictionary table of all associated
data options 736. Thereafter, X12DATANAME built-
in function would be used to expand the data dictionary
each associated description data 738 and the long com-

*plete list would be displayed 740.

If the check at 724 indicates that there is a short list,
the X12DATANAME data dictionary is used to locate
the expanded description of each of the options on the
short list. Thereafter, the short list is displayed 728.
Then a check is made to determine whether the user
wants the full long list as indicated at 730. If the answer
i8 yes, then block 736 is executed as described above. If
no, then the user’s selection from either the short list or
the long list is accepted (732).

A check is then made at block 734 to determine
whether all data is collected. If so, we assemble and
emit the completed X12 transaction 742 and then exit
the routine. Withrespecttotheemxtung operation re-
ferred to in conjunction with 742, the present invention
oontemplatcs the capability of mailing specific sets of
X12 data in addition to mailing the entire travelling
program. If all data is not collected as indicated by the
check in 734, then more data items are retrieved and the
routine execution is repeated.

FIG. 40 relates to the use of the travelling program in
receiving an electronic data interchange. transaction.
For example, a particular user may have received a
travelling program generated purchase order. Initially,
the received ED] transaction is read 750. Perhaps by a
timer-delay travelling program, as described with FIG.
29, which spawns copies of itself as input arrives. The
encoded EDI is then parsed into program variables 752.
The received EDI is then moved to an archive reposi-

Version: 1.4.1

VaeDy

s

RN RIS

5,390, 247

L. 29
torytopmservethatwhxchhasbeenmexved forpm-
ble audit. The segments are then processed via a con-
pled segment dictionary 756. The segment rules associ-
ated with X12 are enforced which, for example, may
relate to not having certain kinds of data in particular 5
fields, 758. For each data item, the data dictionary asso-
ciated with each segment is located 760. Far a statement
such as shown in 762 where DESC=X-
12DATANAME (SEGCODE, DATA ITEM), this
statement will result in a call to the data dictiopary to 10
get a meaningful description of the data item. The re-
trieved meaningful description will be placed into a
display variable resulting in, for example, a display of
the purchase order in a purchase order format. All data
items are processed by branching back to block 762 and 13
all segments are processed branching back to 756.

The preferred embodiment also allows access to a
Digital Notary facility by providing built-in functions
which can access a digital notary, or notary device such
as described in inventor's U.S. Pat. No. 5,001,752 20
(which is incorporated herein by reference), or other
devices as well.

By allowing a travelling program to access such a
facility, the travelling program is able to move datato a
platform where the digital notary can be easily ac-
cessed, then using the built-in function to do so. This
allows notarization for important signatures, times-
tamps for inbound traffic, or for any other reason. Since
such notarization is strictly under control of the pro- 4,
gram, any criteria whatever, whether automatic or
based on user requests, can be used.

Also as described earlier, the facility allows for the
coupling to outbound FAX so0 that electronic forms, in
addition to being converted to EDI, or printed, can also 34
be faxed to the ultimate recipient.

Also, as implied, but not explicitly stated, even when
a travelling program emits an EDI transaction, it may
still be activated later. One example would be a travel-
ling program which first serves as an electronic requisi- 49
tion then, after sufficient approving signatures; gener-
ates a purchase order. It could then send itself to a
repository where it could later be reactivated when the
corresponding invoice and bills eventually arrive (elec-
tronic or otherwise) and can serve as a method for 45
reconciling the order with the shipment received and
the billing. It can incorporate logic which to keep track
of which items have been received, and which are still
pending. Because of the ability to flexibly direct itself, it
can span many different sites. Insofar as handling ship- sg
ping and receiving, it is also possible to couple the trav-
elling program with a bar code reader and validate
materials sent and received without human data entry.

The preferred embodiment envisions that the travel-
~ling: program Gould bé coupled” to @ variety of ‘equip- 55
ment, including office equipment, and other devices and
facilitates.

Also, any given traversal could also be sent simulta-
neously to a variety of recipients.

The following listing reiterates and summarizes many 60
of the above-described functions (and identifies some
edditional functions) which the preferred embodiment
is capable of performing. This list is only illustrative and
is not intended to be exhaustive of the many other appli-
cations to which the present invention may be advanta- 65
geously applied.

Displaying data to the user using a layout language

(similar to, e.g., TxX, or SCRIPT), Soliciting input

07/30/2004,

. 30
from the unser using a layount-type language (snmilar
to, e.g., TeX, or SCRIPT).

Performing digital signatures for data computed
under program coatrol.

Verifying digital signatures based on data computer
under program control.

Handling co-signatures, possibly including routing
suggestions derived from the signer’s certificates.

Reading data from user files,

Creating user files,

Erasing user files

Writing data into user files

Renaming user files

Receiving incoming electronic mail

Reading the contents of electronic mail -

Moving or archiving incoming mail

Deleting incoming mail

Generating outbound electronic mail.

Coupling to and controlling an outbound FAX server

Coupling to and controlling a printer.

Generating a graphical image.

Coupling to and controlling a device that can receive
and transmit andio signals

Accessing various types of equipment, including of-
fice equipment, computer equipment (tapes, disks,
etc.) robot devices, mannfacturing equipment, etc.

Splitting an instance of the travelling program into
several instances by virtue of multiple traversals.

Being able to re-combine the data contained in the
several travelling programs, possibly not even re-
flecting the same program, into a single form.

Erasing other instances of travelling programs. .

Invoking external programs.

Invoking other travelling programs as subroutines.

Activating other travelling programs as indepen-
dently executing functions.

Extracting data from a dormant (non-executing) trav-
clhng program,

information about another (non-execut-
ing) travelling-program without have to execute
it—such as name of the program, and other status,
etc.

Extracting information from the certificates associ-
ated with digital signatures. This information being
used to help direct routing if cosignature require-
ments are involved.

Making a copy of a travelling program as a data
variable within another program, or ATTACHing
a travelling program as a file to another.

Using one travelling program (the “carrier”) to trans-
port a new version of another to various destina-
tions, and replacing the program segment of exist-
ing instances with another, more up-to-date version

ofthepmgram. One way. to do this would be.for-,

A -degiap, Seabe e

' thenewerpmgi"am to be added to the end
of existing travelling programs. Enhancements to
the existing interpreter/loader would recognize
that a program segment following the closure seg-
ment reflected a suggested program revision. After
whatever normal transmission was performed, it
would then validate the digital signatures associ-
ated with the proposed revised program, and, if
they carried the proper authority, would then com-
mence using the new program in place of the pro-
gram which had arrived as part of the standard
traversal.

Attaching wuser files. -

Exporting attached files into user files.

EAST Version: 1.4.1

.....

-

.31,

Detaching previously attached files.

Accessing a digital notary device .

Performing a program traversal .

Transmitting user data (in other than a traversal), so
that the transmission does not include the travel-
ling program itself, (e.g., simply sending a message
to another destination.

Using built-in functions to simplify the use, creation,
display, construction and receipt of EDI (such as
X12 or EDIFACT) to conveniently supply com-
mon information and facilities without having to
supply these functions in the travelling program.
This includes built-in functions which access the
Data Element Dictionary, the Segment Dictio-
nary, the segment rules, and the transaction sets
themselves.

While the invention has been described in connection
with what is préseitly considered to be the most practi-
cal embodiment, it is to be understood that the invention
is not to be limited to the disclosed embodiment, but on
the contrary, is intended to cover various modifications
and equivalent arrangements included within the spirit
and scope of the appended claims.

What is claimed is: .

L In a communications system having a plurality of
digital computers coupled to a channel over which
computers exchange digital messages, a method for
processing information among said computers compris-
ing the steps of:

5,390,247

5

10

20

- Lt 32 . PEIA

9. A method according to claim 1, further including
the step of preserving the second travelling program
after its execution.

10. In a communications system having a plurality of
digital computers coupled to a channel over which
digital computers exchange messages, a method for
processing information among said computers compris-
ing the steps of:

executing on a digital computer a first travelling pro-

gram instance comprising a' sequence of digital
instructions, including instructions which deter-
mine at least one next destination that receives the
set of instructions, said set of instructions including
instructions for transmitting said instructions to-

. gether with accompanying digital data to said next:
destination;

transmitting to at least one of said digital computers a

second travelling program instance; and* ~ = -

processing the second travelling program under di-

rection of instructions in the first travelling pro-
gram instance.

11. A method according to claim 10 wherein the
processing operation includes the step of erasing the
second travelling program instance.

25 12. A method according to claim 10, wherein the

Pprocessing step includes the step of extracting data from
the second travelling program instance.

13. A method according to claim 10, wherein the
processing step includes the step of altering the pro-

30 gram instructions in the second travelling program

executing on a digital computer a first travelling pro-- instance.

gram comprising a sequence of digital instructions
which determines at least one next destination that

14. A method according to claim 10 wherein the
processing operation includes the step of altering the

receives the set of instructions, said set of instruc-. value of the variables stored in the second travelling
tions including instructions for transmitting said 35 program instance.

instructions together with accompanying digital
data to said next destination;

transmitting to at least one of said digital computers a
second travelling program; and

15. A method according to claim 10 wherein said
second program instance includes the same instructions
as the first program instance.

16. In a communications system having a plurality of

executing the'second travelling program under direc- 40 digital computers coupled to a channel “over=which

tion of the first travelling program.

2. A method according to claim 1, wherein the first
and second travelling programs include the same set of
instroctions but do not include the same set of program
variables.

3. A method according to claim 1 wherein the first
and second travelling programs comprise distinct sets of
instructions.

4. A method according to claim 1, further including
the step of presenting data by the first travelling pro-
gram to the second travelling program which defines
the operation to be performed by the second travelling
program.

travelling program returns data to the first travelling
program.

45

digital computers exchange messages, a method for
processing digital information -among said computers
comprising the steps of:
executing on a first computer with a sequence of
digital instructions, including instructions which
determine at least one next destination that should
receive the set of instructions, said set of instruc-
tions including instructions for transmitting said
instructions together with accompanying digital
data to said next destination;
selecting a file in response to execution of said se-
quence of instructions; and
transmitting at least part of the content of said se-
“execution of said sequence of instructions.
17. A method according to claim 16, including the
step of digitally signing at least part of the data of said

6. A method according to claim 1, wherein both file.

travelling programs are transmitted in an interpretative

18. A method according to claim 16, including the

format, whereby the travelling programs and data can ¢ step of computing a hash value of at least part of the

be interpreted on a variety of computer system and
hardware architectures.
7. A method according to claim 6, whereby the inter-

data of said file.
19. In a communications system having a plurality
digital of computers coupled to a channel over which

pretative format can be processed on at least two dis- digital computers exchange messages, a method for

tinct types of computers.

8. A method according to claim 1, further including
the step of erasing the second travelling program from
memory by the first travelling program.

07/30/2004,

65 forwarding information in said communications system

comprising the steps of:
executing on a first digital computer a set of instruc-
tions including digital instructions which generate

EAST Version: 1.4.1

.. 5.Amethod rding torclaim 1 wherein'the second 3 - lected file to said next destination n, response.to = mzpnwna

5,390,247

a plurality_of instances of said set of instructions instructions together with accompanying digital

and which initiate transmission to at least a first and data to said next destination;

a second destination which respectively receive transmitting said sequence of instructions to at least

one of said instances together with accompanying one next destination; and

digital data; 5 performing a date/time notarization of information
including within said instances transmitted to said controlled by said sequence of instructions.

first and second destinations digital instructions for _25. In a communications system having a plurality of
subsequently merging, at a merging. destination, 4igital computers coupled to a chanmel over which
data that has been accumulated during their dis- digital computers .exchangfa messages, a method for
tinct t ission paths via said first and second 10 Processing digital information among said computers

destinations; and compris'x_lg the steps of: .
e Lo . . executing first computer with a sequence of
transmitting one of said instances to said first destina- cutmg on a urs Juter | 2 sequence |
tion and one of said instances to said second desti- dxgltal. program instructions, including digital n-
nation. structions which determine at least one next desti-

20. A method according to clsim 19, farther includ- ° 2a%on r‘h“,‘.o':‘f?n‘;? rog Es‘?‘ of oo, said st

ing the steps of: ting said instructions together with panying
establishing one instance as the master instance; and digital data to said neng;:nnanon, v
controlling the master to extract data from other transmitting said sequence of digital instructions to at

instances as they arrive at the merging destination. 5 least one next destination; and
21. In a communications system having a plurality of performing a time delay operation under the control
digital computers coupled to a channel over which of said sequence of instructions.
digital computers exchange messages, a method for 26. In a communications system having a plurality of
processing digital information among said computers digital computers coupled to a channel over which
comprising the steps of: 25 digital computers exchange messages, a method for
executing on a first computer with a sequence of processing digital information among said computers
digital program instructions, including instructions comprising the steps of:
which determine at least one next destination that executing on 2 first digital computer a sequence of

receive the set of instructions, said set of instruc- digital instructions, including digital instructions

tions including instructions for transmitting said 30 which determine at least one next destination that

instructions together with accompanying digital receives the sequence of digital instructions;

data to said next destination; acq@rhxgdxgitaldataﬁ'omauserofatl.mtoneof
qualifying the set of operations which said sequence said computers under the control of said sequence

of instructions is allowed to perform; of digital instructions; _
transmitting said set of instructions to said next desti- 35 trapslating said data under the control of said se-

nation; and quence of digital instructions into a predefined data

detefmnmgatsaxﬂncxtd&tnahonwhetheranf)p&- diei signing at least part of said data via
ation to be performed under the control of said set glthemu) gmnguﬁon of said seq of A structure
of mstructions fs authocised. i 0 tion to creatc digital sgnature viugand
22. A method ‘according to claim 21, wherein said transmitting digital information inchuding said digital
f qualifying the set of operations is specified by a X & A &
ﬁ;u:ingsaidpmgram. y signature value to a next destination under the
- . . control of said sequence of digital instructions.
_ 3. A method according to claim 21, further includ- " nethod according to claim 26, wherein said
ing t]:e step of dxgxtally signing information md:canve_of 45 translating step includes the step of translating said data
qualified operations by a party trusted by the parties under control of said sequence of instructions into an
using said travelling program. . . Electronic Data Interchange (EDI) format.
_y.maoommmwanonssystunhavmgaplnrahtxof 28. A method according to claim 26, wherein at least
d{gftalcompuﬁers coupled to a channel over which Wtofmeagmmdgmmmw
digital computers exchange messages, a method for so with the digital signature of said data structure is trans-
processing digital information among said computers mitted as a set of data independently of the sequence of
comprising the steps of: digital instructions.
executing on a first digital computer a sequence of 29. A method according to claim 26, wherein the

program instructions, including digital instructions . result of the digital signature is verified when the set.0f - s . rsoocioqs v v

‘whichdétérmiie at [esst ‘one next destination that 5§ instractions is executed at at least one subsequent desti-
receives the set of instructions, said set of instruc- nation.
tions including instructions for transmitting said * s e

65

07/30/2004, EAST Version: 1.4.1

	2004-07-30 Examiner's search strategy and results

